




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第1讲坐标系【复习指导】复习本讲时,要抓住极坐标与直角坐标互化公式这个关键点,这样就可以把极坐标问题转化为直角坐标问题解决,同时复习以基础知识、基本方法为主. 基础梳理1极坐标系的概念在平面上取一个定点O叫做极点;自点O引一条射线Ox叫做极轴;再选定一个长度单位、角度单位(通常取弧度)及其正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系(如图)设M是平面上的任一点,极点O与点M的距离|OM|叫做点M的极径,记为;以极轴Ox为始边,射线OM为终边的xOM叫做点M的极角,记为.有序数对(,)称为点M的极坐标,记作M(,)2直角坐标与极坐标的互化把直角坐标系的原点作为极点,x轴正半轴作为
2、极轴,且在两坐标系中取相同的长度单位如图,设M是平面内的任意一点,它的直角坐标、极坐标分别为(x,y)和(,),则或3直线的极坐标方程若直线过点M(0,0),且极轴到此直线的角为,则它的方程为:sin()0sin (0)几个特殊位置的直线的极坐标方程(1)直线过极点:0和0;(2)直线过点M(a,0)且垂直于极轴:cos a;(3)直线过M且平行于极轴:sin b.4圆的极坐标方程若圆心为M(0,0),半径为r的圆方程为220cos(0)r20.几个特殊位置的圆的极坐标方程(1)当圆心位于极点,半径为r:r;(2)当圆心位于M(a,0),半径为a:2acos_;(3)当圆心位于M,半径为a:2
3、asin_.双基自测1点P的直角坐标为(,),那么它的极坐标可表示为_解析直接利用极坐标与直角坐标的互化公式答案2若曲线的极坐标方程为2sin 4cos ,以极点为原点,极轴为x轴正半轴建立直角坐标系,则该曲线的直角坐标方程为_解析2sin 4cos ,22sin 4cos .x2y22y4x,即x2y22y4x0.答案x2y24x2y03(2011·西安五校一模)在极坐标系(,)(02)中,曲线2sin 与cos 1的交点的极坐标为_ 解析2sin 的直角坐标方程为x2y22y0,cos 1的直角坐标方程为x1,联立方程,得解得即两曲线的交点为(1,1),又02,因此这两条曲线的交
4、点的极坐标为.答案4在极坐标系中,直线l的方程为sin 3,则点到直线l的距离为_解析直线l的极坐标方程可化为y3,点化为直角坐标为(,1),点到直线l的距离为2.答案25(2011·广州调研)在极坐标系中,直线sin2被圆4截得的弦长为_解析由sin2,得(sin cos )2可化为xy20.圆4可化为x2y216,由圆中的弦长公式得:2 2 4.答案4考向一极坐标和直角坐标的互化【例1】(2011·广州测试(二)设点A的极坐标为,直线l过点A且与极轴所成的角为,则直线l的极坐标方程为_审题视点 先求直角坐标系下的直线方程再转化极坐标方程解析点A的极坐标为,点A的平面直角
5、坐标为(,1),又直线l过点A且与极轴所成的角为,直线l的方程为y1(x)tan ,即xy20,直线l的极坐标方程为cos sin 20,可整理为cos1或sin1或sin1.答案cos1或cos sin 20或sin1或sin1. (1)在由点的直角坐标化为极坐标时,一定要注意点所在的象限和极角的范围,否则点的极坐标将不唯一(2)在曲线的方程进行互化时,一定要注意变量的范围要注意转化的等价性【训练1】 (2011·佛山检测)在平面直角坐标系xOy中,点P的直角坐标为(1,)若以原点O为极点,x轴正半轴为极轴建立极坐标系,则点P的极坐标可以是_解析由极坐标与直角坐标的互化公式cos
6、x,sin y可得,cos 1, sin ,解得2,2k(kZ),故点P的极坐标为(kZ)答案(kZ)考向二圆的极坐标方程的应用【例2】(2011·广州测试)在极坐标系中,若过点(1,0)且与极轴垂直的直线交曲线4cos 于A、B两点,则|AB|_.审题视点 先将直线与曲线的极坐标方程化为普通方程,再利用圆的知识求|AB|.解析注意到在极坐标系中,过点(1,0)且与极轴垂直的直线的直角坐标方程是x1,曲线4cos 的直角坐标方程是x2y24x,即(x2)2y24,圆心(2,0)到直线x1的距离等于1,因此|AB|22.答案2 解决此类问题的关键还是将极坐标方程化为直角坐标方程【训练2
7、】 (2011·深圳调研)在极坐标系中,P,Q是曲线C:4sin 上任意两点,则线段PQ长度的最大值为_解析由曲线C:4sin ,得24sin ,x2y24y0,x2(y2)24,即曲线C:4sin 在直角坐标系下表示的是以点(0,2)为圆心、以2为半径的圆,易知该圆上的任意两点间的距离的最大值即是圆的直径长,因此线段PQ长度的最大值是4.答案4考向三极坐标方程的综合应用【例3】如图,在圆心的极坐标为A(4,0),半径为4的圆中,求过极点O的弦的中点的轨迹审题视点 在圆上任取一点P(0,0),建立P点与P的中点M的关系即可解设M(,)是所求轨迹上任意一点连接OM并延长交圆A于点P(0
8、,0),则有0,02.由圆心为(4,0),半径为4的圆的极坐标方程为8cos ,得08cos 0.所以28cos ,即4cos .故所求轨迹方程是4cos .它表示以(2,0)为圆心,2为半径的圆 求轨迹的方法与普通方程的方法相同,但本部分只要求简单的轨迹求法【训练3】 从极点O作直线与另一直线cos 4相交于点M,在OM上取一点P,使|OM|·|OP|12,求点P的轨迹方程解设动点P的坐标为(,),则M(0,)|OM|·|OP|12.012.0.又M在直线cos 4上,cos 4,3cos .这就是点P的轨迹方程高考中极坐标问题的求解策略从近两年新课标高考试题可以看出,高考对该部分重点考查极坐标与直角坐标的互化以及圆的极坐标问题,但各省市的要求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 共享自习室项目实施方案
- 贵州省六盘水市水城区2023-2024学年高一上学期12月月考历史含解析
- 2025年开展安全生产月活动实施方案 (3份)
- 江西工业贸易职业技术学院《纳米材料表征方法》2023-2024学年第二学期期末试卷
- 广西英华国际职业学院《篮球四》2023-2024学年第二学期期末试卷
- 安徽理工大学《电工电子综合实践》2023-2024学年第二学期期末试卷
- 濮阳石油化工职业技术学院《工业催化》2023-2024学年第二学期期末试卷
- 甘肃机电职业技术学院《计算机应用综合性设计》2023-2024学年第二学期期末试卷
- 广东海洋大学《大数据技术开源架构》2023-2024学年第二学期期末试卷
- 武汉科技大学《环境生态学俄》2023-2024学年第二学期期末试卷
- 《2025年CSCO卵巢癌诊疗指南》更新要点解读
- 2024年广东省广州市中考数学试卷【含解析】
- 抛石挤淤方案
- 《海上浮架用抗老化高密度聚乙烯(HDPE)踏板》
- 中华民族发展史知到课后答案智慧树章节测试答案2025年春云南大学
- 3.2依法行使权利 教案 2024-2025学年统编版道德与法治八年级下册
- 2025年浙江台州市黄岩永宁公园服务有限公司招聘笔试参考题库附带答案详解
- 安全玻璃采光顶施工方案
- 消防安全知识培训(完整版)
- 《有效处理客户投诉的策略与技巧:课件》
- 供应链管理流程图及说明课件
评论
0/150
提交评论