


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2.4.1平面向量的数量积的物理背景及其含义教学目的:1.掌握平面向量的数量积及其几何意义;2.掌握平面向量数量积的重要性质及运算律;3.了解用平面向量的数量积可以处理垂直的问题;4.掌握向量垂直的条件.教学重点:平面向量的数量积定义教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用教学过程:一、复习引入:(1)两个非零向量夹角的概念:已知非零向量与,作,则()叫与的夹角.说明:(1)当时,与同向;(2)当时,与反向;(3)当时,与垂直,记;(4)注意在两向量的夹角定义,两向量必须是同起点的.范围0°q180°(2)两向量共线的判定(3)练习 1.若a=(2
2、,3),b=(4,-1+y),且ab,则y=( C )A.6 B.5 C.7 D.82.若A(x,-1),B(1,3),C(2,5)三点共线,则x的值为( B )A.-3 B.-1 C.1 D.3(4)力做的功:W = |F|×|s|cosq,q是F与s的夹角.二、讲解新课:1平面向量数量积(内积)的定义:已知两个非零向量与,它们的夹角是,则数量|a|b|cosq叫与的数量积,记作a×b,即有a×b = |a|b|cosq,().并规定0向量与任何向量的数量积为0.×探究:1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负?2、两个
3、向量的数量积与实数乘向量的积有什么区别?(1)两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定.(2)两个向量的数量积称为内积,写成a×b;今后要学到两个向量的外积a×b,而a×b是两个向量的数量的积,书写时要严格区分.符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替.(3)在实数中,若a¹0,且a×b=0,则b=0;但是在数量积中,若a¹0,且a×b=0,不能推出b=0.因为其中cosq有可能为0.(4)已知实数a、b、c(b¹0),则ab=bc Þ
4、a=c.但是a×b = b×c a = c 如右图:a×b = |a|b|cosb = |b|OA|,b×c = |b|c|cosa = |b|OA|Þ a×b = b×c 但a ¹ c (5)在实数中,有(a×b)c = a(b×c),但是(a×b)c ¹ a(b×c) 显然,这是因为左端是与c共线的向量,而右端是与a共线的向量,而一般a与c不共线.2“投影”的概念:作图 定义:|b|cosq叫做向量b在a方向上的投影.投影也是一个数量,不是向量;当q为锐角时投影
5、为正值; 当q为钝角时投影为负值; 当q为直角时投影为0;当q = 0°时投影为 |b|; 当q = 180°时投影为 -|b|.3向量的数量积的几何意义:数量积a×b等于a的长度与b在a方向上投影|b|cosq的乘积.探究:两个向量的数量积的性质:设a、b为两个非零向量,1、ab Û a×b = 02、当a与b同向时,a×b = |a|b|; 当a与b反向时,a×b = -|a|b|. 特别的a×a = |a|2或 |a×b| |a|b| cosq = 探究:平面向量数量积的运算律1交换律:a
6、5; b = b × a证:设a,b夹角为q,则a × b = |a|b|cosq,b × a = |b|a|cosq a × b = b × a2数乘结合律:(a)×b =(a×b) = a×(b)证:若> 0,(a)×b =|a|b|cosq, (a×b) =|a|b|cosq,a×(b) =|a|b|cosq,若< 0,(a)×b =|a|b|cos(p-q) = -|a|b|(-cosq) =|a|b|cosq,(a×b) =|a|b|cosq,
7、a×(b) =|a|b|cos(p-q) = -|a|b|(-cosq) =|a|b|cosq.3分配律:(a + b)×c = a×c + b×c 在平面内取一点O,作= a, = b,= c, a + b (即)在c方向上的投影等于a、b在c方向上的投影和,即 |a + b| cosq = |a| cosq1 + |b| cosq2 | c | |a + b| cosq =|c| |a| cosq1 + |c| |b| cosq2, c×(a + b) = c×a + c×b 即:(a + b)×c = a
8、215;c + b×c说明:(1)一般地,(·)(·)(2)··,0(3)有如下常用性质:,()()····三、讲解范例:例1证明:()·例2已知|a|=12, |b|=9,求与的夹角。例3已知|a|=6, |b|=4, a与b的夹角为60o求:(1)(a+2b)·(a-3b). (2)|a+b|与|a-b|. ( 利用 ) 例4已知|a|=3, |b|=4, 且a与b不共线,k为何值时,向量a+kb与a-kb互相垂直. 四、课堂练习:1P106面1、2、3题。 2下列叙述不正确的是( )A. 向量的数量积满足交换律 B. 向量的数量积满足分配律C. 向量的数量积满足结合律 D. a·b是一个实数3|a|=3,|b|=4,向量a+b与a-b的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国数字出版行业市场运营动态调研与发展建议咨询报告
- 电子商务师中级模拟考试题与参考答案
- 北京市一七一中学2025年高考适应性考试英语试卷含解析
- 验光员测试题(含答案)
- 车工高级工练习题(附参考答案)
- 职业技术学院2024级证券实务专业人才培养方案
- 2025年海南省海口九中等学校联考中考数学一模试题(原卷版+解析版)
- 院感爆发处置规范理论考核试题
- 游乐设施施工项目成本效益分析考核试卷
- 畜牧业养殖废弃物处理政策效果与优化建议考核试卷
- 《休闲农业》课件 项目四 休闲农业项目策划
- 《资治通鉴》与为将之道知到课后答案智慧树章节测试答案2025年春武警指挥学院
- 哪吒2+deepseek爆火彰显文化自信和科技创新
- 用教学案例解读修订版小学数学课标
- 第九章-人类与自然地理环境.课件
- 中考动员大会校长演讲稿
- 课题申报书:产教融合视域下职业教育赋能新质生产力的模型构建和实现路径研究
- 临床试验入组经验分享
- 跨国合作:应对全球传染病挑战
- 《永辉超市S店库存管理问题及产生原因和优化建议》8700字(论文)
- 《光储充一体化电站技术规范》标准编制说明+征求意见稿
评论
0/150
提交评论