导数概念--公式知识点总结+习题含详细讲解_第1页
导数概念--公式知识点总结+习题含详细讲解_第2页
导数概念--公式知识点总结+习题含详细讲解_第3页
导数概念--公式知识点总结+习题含详细讲解_第4页
导数概念--公式知识点总结+习题含详细讲解_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上导数及其应用知识点总结一、导数的概念和几何意义 1. 函数的平均变化率:函数在区间上的平均变化率为:。 2. 导数的定义:设函数在区间上有定义,若无限趋近于0时,比值无限趋近于一个常数A,则称函数在处可导,并称该常数A为函数在处的导数,记作。函数在处的导数的实质是在该点的瞬时变化率。 3. 求函数导数的基本步骤:(1)求函数的增量;(2)求平均变化率:;(3)取极限,当无限趋近与0时,无限趋近与一个常数A,则. 4. 导数的几何意义: 函数在处的导数就是曲线在点处的切线的斜率。由此,可以利用导数求曲线的切线方程,具体求法分两步: (1)求出在x0处的导数,即为曲线在点

2、处的切线的斜率; (2)在已知切点坐标和切线斜率的条件下,求得切线方程为。 当点不在上时,求经过点P的的切线方程,可设切点坐标,由切点坐标得到切线方程,再将P点的坐标代入确定切点。特别地,如果曲线在点处的切线平行与y轴,这时导数不存在,根据切线定义,可得切线方程为。 5. 导数的物理意义:质点做直线运动的位移S是时间t的函数,则表示瞬时速度,表示瞬时加速度。二、导数的运算1. 常见函数的导数:(1)(k, b为常数);(2)(C为常数);(3);(4);(5);(6);(7);(8)(为常数);(9);(10);(11);(12);(13);(14)。 2. 函数的和、差、积、商的导数: (1

3、);(2)(C为常数); (3);(4)。 3. 简单复合函数的导数: 若,则,即。选择题(共14小题)1函数f(x)=sin2x的导数f(x)=()A2sinxB2sin2xC2cosxDsin2x考点:简单复合函数的导数菁优网版权所有分析:将f(x)=sin2x看成外函数和内函数,分别求导即可解答:解:将y=sin2x写成,y=u2,u=sinx的形式对外函数求导为y=2u,对内函数求导为u=cosx,故可以得到y=sin2x的导数为y=2ucosx=2sinxcosx=sin2x故选D点评:考查学生对复合函数的认识,要求学生会对简单复合函数求导2曲线f(x)=lnx+2x在点(1,f(1

4、)处的切线方程是()A3xy+1=0B3xy1=0C3x+y1=0D3xy5=0考点:简单复合函数的导数;直线的点斜式方程菁优网版权所有分析:先要求出在给定点的函数值,然后再求出给定点的导数值将所求代入点斜式方程即可解答:解:对f(x)=lnx+2x求导,得f(x)=+2故在点(1,f(1)处可以得到f(1)=ln1+2=2,f(1)=1+2=3所以在点(1,f(1)处的切线方程是:yf(1)=f(1)(x1),代入化简可得,3xy1=0故选B点评:考查了学生对切线方程的理解,要求写生能够熟练掌握3若函数f(x)=sin2x,则f()的值为()AB0C1D考点:简单复合函数的导数菁优网版权所有

5、专题:计算题分析:先利用复合函数的导数运算法则求出f(x)的导函数,将x=代入求出值解答:解:f(x)=cos2x(2x)=2cos2x所以f()=2cos=1故选C点评:求函数在某点处的导数值,应该先利用导数的运算法则及初等函数的导数公式求出导函数,在求导函数值4函数f(x)=xsinx+cosx的导数是()Axcosx+sinxBxcosxCxcosxsinxDcosxsinx考点:导数的乘法与除法法则;导数的加法与减法法则菁优网版权所有专题:计算题分析:利用和及积的导数运算法则及基本初等函数的导数公式求出函数的导数解答:解:f(x)=xsinx+cosxf(x)=(xsinx+cosx)

6、=(xsinx)+(cosx)=xsinx+x(sinx)sinx=sinx+xcosxsinx=xcosx故选B点评:本题考查导数的运算法则、基本初等函数的导数公式属于基础试题5的导数是()ABCD考点:导数的乘法与除法法则菁优网版权所有专题:计算题分析:利用导数的四则运算法则,按规则认真求导即可解答:解:y=故选A点评:本题考查了导数的除法运算法则,解题时认真计算即可,属基础题6y=xlnx的导数是()AxBlnx+1C3xD1考点:导数的乘法与除法法则菁优网版权所有专题:导数的综合应用分析:直接由导数的乘法法则结合基本初等函数的导数公式求解解答:解:y=xlnx,y=(xlnx)=xln

7、x+x(lnx)=故选:B点评:本题考查导数的乘法法则,考查了基本初等函数的导数公式,是基础题7函数y=cosex的导数是()AexsinexBcosexCexDsinex考点:导数的乘法与除法法则菁优网版权所有专题:导数的概念及应用分析:根据导数的运算法则即可得到结论解答:解:函数的导数为f(x)=sinex(ex)=exsinex,故选:A点评:本题主要考查导数的基本运算,要求熟练掌握常见函数的导数公式以及导数的运算法则8已知,则f()=()A1+B1C1D0考点:导数的加法与减法法则菁优网版权所有专题:计算题分析:本题先对已知函数进行求导,再将 代入导函数解之即可解答:解:故选B点评:本

8、题主要考查了导数的运算,以及求函数值,解题的关键是正确求解导函数,属于基础题9函数的导数是()ABCexexDex+ex考点:导数的加法与减法法则菁优网版权所有专题:计算题分析:根据求导公式(u+v)=u+v及(ex)=ex即可求出函数的导数解答:解:,y=故选A点评:本题考查了导数的运算,牢记求导公式是解本题的关键10函数y=x22x在2处的导数是()A2B4C6D8考点:导数的加法与减法法则菁优网版权所有专题:计算题;导数的概念及应用分析:求出原函数的导函数,在导函数解析中取x=2计算即可得到答案解答:解:由y=x22x,得y=2x2y|x=2=2×(2)2=6故选C点评:本题考

9、查了倒数的加法与减法法则,考查了基本初等函数的导数公式,是基础的计算题11设y=ln(2x+3),则y=()ABCD考点:导数的运算菁优网版权所有专题:导数的概念及应用分析:根据复合函数的导数公式即可得到结论解答:解:y=ln(2x+3),故选:D点评:本题主要考查导数的计算,要求熟练掌握复合函数的导数公式,比较基础12已知函数,则f(x)等于()ABC0D考点:导数的运算菁优网版权所有专题:导数的概念及应用分析:我们知道:若函数f(x)=c为常数,则f(x)=0,故可得出答案解答:解:函数,f(x)=0故选C点评:本题考查了常数的导数,只要理解常数c=0即可解决此问题13曲线y=x2+3x在

10、点A(2,10)处的切线的斜率k是()A4B5C6D7考点:导数的几何意义菁优网版权所有专题:计算题分析:曲线y=x2+3x在点A(2,10)处的切线的斜率k就等于函数y=x2+3x在点A(2,10)处的导数值解答:解:曲线y=x2+3x在点A(2,10)处的切线的斜率 k=y=2x+3=2×2+3=7,故答案为 7点评:本题考查函数在某点导数的几何意义的应用14曲线y=4xx2上两点A(4,0),B(2,4),若曲线上一点P处的切线恰好平行于弦AB,则点P的坐标为()A(1,3)B(3,3)C(6,12)D(2,4)考点:导数的几何意义菁优网版权所有分析:首先求出弦AB的斜率,再利

11、用导数的几何意义求出P点坐标解答:解:设点P(x0,y0)A(4,0),B(2,4)kAB=2过点P的切线l平行于弦ABkl=2根据导数的几何意义得知,曲线在点P的导数y=42x=42x0=2,即x0=3点P(x0,y0)在曲线y=4xx2上y0=4x0x02=3故选B点评:考核导数的几何意义及两条直线平行斜率的关系二填空题(共2小题)15求导:()=,考点:简单复合函数的导数菁优网版权所有专题:导数的概念及应用分析:根据复合函数的导数公式进行求解即可解答:解:=(x2+1),则函数的导数为y=(x2+1)(x2+1)=(x2+1)×2x=,故答案为:点评:本题主要考查导数的计算,根据复合函数的导数公式是解决本题的关键16函数y=的导数是考点:简单复合函数的导数菁优网版权所有专题:导数的概念及应用分析:根据复合函数的导数公式进行计算即可解答:解:函数的导数为y=,故答案为:点评

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论