




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、实用标准文档乘法公式的复习一、复习:(a+b)(a-b尸a 2-b2 (a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2(a+b)(a 2-ab+b2)=a 3+b3(a-b)(a2+ab+b2)=a3 b3归纳小结公式的变式,准确灵活运用公式:位置变化,(X4y *刁攸/2_y2 符号变化,J咒x j_y2=x 2_y2 指数变化,(X24y2 02_y2/4_丫422 系数变化,(2a4b j2a-b/a _b换式变化,Ixy z m |xy- z m22 xy - z m=x2y2- z m z m=x2y2-(z2 zm zm rm=x2y2 -z2 -2zm-n2增项
2、变化, x-y z x-y-z22 x-y -z2: x-y x-y-z222=x-xy 云y y -z222=x -2xy y -z22 连用公式变化,(x jx-y jx +y)二y寸x2 y244女-y 逆用公式变化,(x-y J-(x+y-z )=1 x-y z ;rix y-z I1 x-y z - x y-z =2x -2y 2z=-4xy 4xz例 1.已知 a +b = 2, ab = 1,求 a2 +b2的值。解:(a +b)2 = a2 +2ab +b2,a2 + b2 =(a+b)2 _2ab222a+b=2, ab=1a +b =2 _2x1 = 2例 2.已知 a+b
3、=8, ab=2,求(a b)2 的值。解:(a b)2 = a2 2ab b2 (a - b)2 = a2 - 2ab b222. .2. .2,(a+b) (ab) =4ab ,(a+b) 4ab = (ab)22a+b=8, ab=2,(a b)2 =82 4父 2 =56例 3:计算 19992-2000 X 1998R解析1此题中 2000=1999+1, 1998=1999-1 ,正好符合平方差公式。解:19992-2000 X 1998 =1999 2- (1999+1) X ( 1999-1 ) =199 92- ( 19992-1 2) =19992-199 9 2+1 =1
4、例 4:已知 a+b=2, ab=1,求 a2+b2和(a-b) 2 的值。R解析1此题可用完全平方公式的变形得解。解:a2+b2=(a+b) 2-2ab=4-2=2(a-b) 2=(a+b) 2-4ab=4-4=0例 5:已知 x-y=2 , y-z=2 , x+z=14。求 x2-z 2 的值。R解析1此题若想根据现有条件求出x、v、z的值,比较麻烦,考虑到x2-z2是由x+z和x-z的积得来的,所以只要求出x-z的值即可。解:因为 x-y=2 , y-z=2 ,将两式相加得 x-z=4 ,所以 x2-z 2= (x+z) (x-z)=14 X 4=56。例 6:判断(2+1) ( 22+
5、1) (24+1)(22°48+1) +1的个位数字是几?R解析1此题直接计算是不可能计算出一个数字的答案,故有一定的规律可循。 观察到1= (2-1 )和上式可构成循环平方差。解:(2+1) (22+1) ( 24+1)(22048+1 ) +1(2-1 ) ( 22+1) (24+1)(22048+1 ) +1文案大全4096=21024=16因为当一个数的个位数字是6的时候,这个数的任意正整数哥的个位数字都是6,所以上式的个位数字必为6。例7.运用公式简便计算(1) 1032(2) 1982解:(1) 1032T10043,=1002母父100父3+32 =10000枪00前=
6、10609(2) 1982: 200-2 2 幺002-2 2 0 0 2 22 =40000-800 4 =39204例8 .计算(1) 044b与c jaab与C)(2)(3xy_2 j3x_y%)解:(1)原式 Ra-3c y+4b ,a-3c y4bx a-3c j-f 4b 沁2-6acyc2-16b2(2)原式=l3xn;y-2 Il3x- y-2 1-9x2- y 2-4y 4 =9x2-y2 4y-4例9.解下列各式(1)已知 a24b2=13, ab=6,求(aW2, (abj 的值。(2)已知(aW2q,(a-bj=4,求 a2+b2, ab 的值。2a2 b2(3)已知a
7、(a1 *a 4产,求三万b- -ab的值。(4)已知x=3 ,求x4+A的值。 xx分析:在公式(aW jd他242ab中,如果把a卅,a2+b2和ab分别看作是一个整体,则公 式中有三个未知数,知道了两个就可以求出第三个。22解:(1) a 为=13, ab=6.(a坨)=a2+b22abM342><6=25(a4)=a2+b2-2ab=13-26=1(2) (ab 2寸,(a42wa2abW2=7a2-2ab 地2N值得 2 (a2W2 产1,即 a2 +b2 =11 得 4 ab=3,即 ab =4(3)由 a(a-1 y(a2-bj=2得 a-b=222a+b1 2212
8、 12,-ab=5(a +b 2ab )=5(ab)=v(H)=2,11-r_ C 1O 1(4)由 x =3 ,得.x =9 即 x +-22=9 x +-2=11 xxxx214141, x =121 即 x + +2=121x + =119xxx例10.四个连续自然数的乘积加上1, 一定是平方数吗?为什么?2分析:由于1 2 3 4 1 =25=5223 4 5 1=121 =11_ _234 5 6 1 =361 =19得猜想:任意四个连续自然数的乘积加上1,都是平方数。n n 1 n 2 n 3 1-|n n 3 I1 n 1 n 2 11解:设n, n+1, n技,n+3是四个连续
9、自然数n2+3n)2(n2+3n1W n/n jfn/n+2 户n n2+3n) n是整数,n2, 3n都是整数,n 2+3nM 一定是整数2.(n +3n货属一个平方数:四个连续整数的积与 1的和必是一个完全平方数。例 11.计算 (1)(x24+1 2(2) (3rnnpj解:(1)(x2b 2#2 招(小,2空 x2 (我y+2x21+2(By1=x*%2x&x22x432=x -2x 3x -2x 12222222(2) (3m+n-p 3m)4n 4(-p3mn9 3m(-p J+2 n (-p/m% +p 为mn-6mp_2np分析:两数和的平方的推广©地y 2
10、qaWytc 2叱 j罐(aW Jc+c2 =a2+2ab+b2+2ac+2bc4c2 2222222=a 4b +c 42abbcac即(a+b+c)=a 4b +c 42ab+2bc+2ac几个数的和的平方,等于它们的平方和加上每两个数的积的2倍。二、乘法公式的用法(一)、套用:这是最初的公式运用阶段,在这个环节中,应弄清乘法公式的来龙去脉, 准确地掌握其特征,为辨认和运用公式打下基础,同时能提高学生的观察能力。ccccc 2c 2.例 1.计算:(5x +3y 5x2 3y )解:原式=(5x ) (3y ) = 25x 9y(二)、连用:连续使用同一公式或连用两个以上公式解题。例 2.
11、计算:(1 a (a+1'a2+1'(a4+1)解:原式二1 a2 1 a2 1 a4=1-a4 1 a4=1 .a8例 3.计算:(3x+2y 5z + 113x+2y 5z 1)解:原式=I 2y -5z 3x 1 II 2y 5z - 3x 1 22=2y -5z 3x 1= 4y2 - 9x2 25z2 - 20yz -6x -1三、逆用:学习公式不能只会正向运用,有时还需要将公式左、右两边交换位置,得出 公式的逆向形式,并运用其解决问题。22例 4.计算:(5a 十 7b8c) (5a - 7b + 8c)解:原式=I 5a 7b - 8ci5a - 7b 8c U
12、5a 7b - 8c)i5a - 7b 8c 1-10a 14b-16c-140ab -160ac四、变用:题目变形后运用公式解题。例 5.计算:(x+y2z jx 十 y 十6z)解:原式=L x y 2z)-4z" x y 2z i 4z 122=x y 2z i (4z 222_=x y - 12z 2xy 4xz 4yz五、活用:把公式本身适当变形后再用于解题。这里以完全平方公式为例,经过变形 或重新组合,可得如下几个比较有用的派生公式:.22.21. a b): - 2ab = a b22 . 22. a - b I - 2ab = a b22223. a b a -b =
13、2a b224. a b j ia - b = 4ab灵活运用这些公式,往往可以处理一些特殊的计算问题,培养综合运用知识的能力。例 6.已知 ab=4, ab = 5,求 a2+b2的值。解:a2+b2 =(a bf+2ab=42+2V5=26.、,22例 7.计算:(a+b + c d)+(b+c+da)解:原式=Rb+c)+(a d+ 6b +c)(ad= 2kb+cj +(a -d 2 _2_2_2_2=2a2 2b2 2c2 2d2 4bc - 4ad例 8.已知实数 x、v、z 满足 x + y=5, z2 = xy + y9,那么 x + 2y+3z=()解:由两个完全平方公式得:
14、ab = N«a+bj -(a-bj】4从而 z2 = 152 -(x-yfl+y-9425 125-2y y -944 -y2 6y - 9=- y2 _ 6y 92 - y -3 z2 +(y-3j =0 z = 0, y = 3 x =2 x 2y 3z = 2 2 3 0 = 8三、学习乘法公式应注意的问题(一)、注意掌握公式的特征,认清公式中的“两数”.例 1 计算(-2 x2-5)(2 x2-5)分析:本题两个因式中“-5 ”相同,“2x2”符号相反,因而“-5 ”是公式(a+b)( a- b)= a2- b2 中的a,而“ 2x2”则是公式中的b.解:原式=(-5-2
15、x2)(-5+2 x2)=(-5) 2-(2 x2) 2=25-4 x4 .例 2 计算(-a2+4b)2分析:运用公式(a+b)2=a2+2ab+b2时,“-a2”就是公式中的a, “4b”就是公式中的 b;若将题目变形为(4b-a2)2时,则“ 4b”是公式中的a,而“a2”就是公式中的b.(解略)(二)、注意为使用公式创造条件例 3 计算(2 x+y- z+5)(2 x-y+z+5).分析:粗看不能运用公式计算,但注意观察,两个因式中的“2x”、“ 5”两项同号,“y”、“ z”两项异号,因而,可运用添括号的技巧使原式变形为符合平方差公式的形式.解:原式=(2x+5)+( y-z) (2
16、x+5)-( y- z)=(2x+5)2-( y-z)2=4x2+20x+25-y+2yz-z2.例 4 计算(a-1) 2(a2+a+1)2( a6+a3+1)2分析:若先用完全平方公式展开,运算十分繁冗,但注意逆用哥的运算法则,则可利用乘法公式,使运算简便.解:原式=(a-1)( a2+a+1)( a6+a3+1) 2=(a3-1)( a6+a3+1) 2=(a9-1) 2=a18-2 a9+1例 5 计算(2+1)(2 2+1)(2 4+1)(2 8+1).分析:此题乍看无公式可用,“硬乘”太繁,但若添上一项(2-1),则可运用公式,使问题化繁为简.解:原式=(2-1)(2+1)(22+
17、1)(2 4+1)(2 8+1)=(2=(22-1)(24-1)(2(28-1 )2+1)(2 4+1)(2 8+1)4+1)(2 8+1)(28+1)=216-1(三)、注意公式的推广计算多项式的平方,由(a+b) 2=a2+2ab+b2,可推广得到:22 . 22(a+b+c) =a+b +c +2ab+2ac+2bc.可叙述为:多项式的平方,等于各项的平方和,加上每两项乘积的2倍.例 6 计算(2 x+y-3) 2解:原式二(2x)2+y2+(-3) 2+2 2x y+2 . 2x(-3)+2 y(-3) ,22=4x +y +9+4xy -12 x-6 y.(四)、注意公式的变换,灵活
18、运用变形公式例 7 (1)已知 x+y=10, x3+y3=100,求 x2+y2 的值;(2) 已知:x+2y=7, xy=6,求(x-2y)2 的值.分析:粗看似乎无从下手,但注意到乘法公式的下列变形:x2+y2=(x+y)2-2xy,x3+y3=(x+y) 3-3 xy(x+y) , (x+y) 2-( x-y)2=4xy,问题则十分简单.解:(1) . x3+y3=(x+y)3-3xy(x+y),将已知条件代入得100=103-3 xy 10,xy=30故 x2+y2=( x+y) 2-2 xy=102-2 x 30=40.(2)( x-2y)2=(x+2y)2-8xy=72-8 x
19、6=1.例 8 计算(a+b+c) 2+( a+b- c) 2+( a- b+c)+( b- a+c)2.分析:直接展开,运算较繁,但注意到由和及差的完全平方公式可变换出(a+b) 2+( a- b) 2=2( a2+b2),因而问题容易解决.解:原式=(a+b)+c2+( a+b)- c 2+ c+( a-b) 2+c-( a- b) 2=2( a+b) 2+c2+2 c2+(a-b)2=2(a+b) 2+( a- b) 2+4 c22. 22=4 a +4b +4c(五)、注意乘法公式的逆运用例 9 计算(a-2 b+3c) 2-( a+2b-3 c) 2.分析:若按完全平方公式展开,再相
20、减,运算繁杂,但逆用平方差公式,则能使运算简 便得多.解:原式=(a-2 b+3c)+( a+2b-3 c)( a-2 b+3c)-( a+2b-3 c)=2 a(-4 b+6c)=-8 ab+12ac.例 10 计算(2 a+3b) 2-2(2 a+3b)(5 b-4 a)+(4 a-5 b)2则运分析:此题可以利用乘法公式和多项式的乘法展开后计算,但逆用完全平方公式,算更为简便.解:原式=(2 a+3b) 2+2(2 a+3b)(4 a-5 b)+(4 a-5 b)22=(2 a+3b)+(4 a-5 b)=(6 a-2 b) 2=36a2-24 ab+4b2.四、怎样熟练运用公式:(一)
21、、明确公式的结构特征这是正确运用公式的前提,如平方差公式的结构特征是:符号左边是两个二项式相乘,且在这四项中有两项完全相同,另两项是互为相反数;等号右边是乘式中两项的平方差,且是相同项的平方减去相反项的平方.明确了公式的结构特征就能在各种情况下正确运用公式.(二)、理解字母的广泛含义乘法公式中的字母 a、b可以是具体的数,也可以是单项式或多项式.理解了字母含义 的广泛性,就能在更广泛的范围内正确运用公式.如计算(x+2y3z) 2,若视x+2y为公式中的a, 3z为b,则就可用(a b) 2=a22ab+b2来解了。(三)、熟悉常见的几种变化有些题目往往与公式的标准形式不相一致或不能直接用公式
22、计算,此时要根据公式特 征,合理调整变化,使其满足公式特点.常见的几种变化是:1、位置变化 如(3x+5y) ( 5y 3x)交换3x和5y的位置后即可用平方差公式计算了.2、符号变化 如(2m-7n) (2m-7n)变为(2m+7n) (2m-7n)后就可用平方差公 式求解了(思考:不变或不这样变,可以吗?)3、数字变化 如 98X 102, 992, 912等分别变为( 100 2) (100+2), (1001) 2, (90+1) 后就能够用乘法公式加以解答了.4、系数变化 如(4m+n) (2mi- n)变为2 (2m+- ) (2mi- 口)后即可用平方差公式2444进行计算了.5
23、、项数变化 如(x+3y+2z) (x3y+6z)变为(x+3y+4z 2z) (x3y+4z+2z)后再适 当分组就可以用乘法公式来解了.(四)、注意公式的灵活运用有些题目往往可用不同的公式来解,此时要选择最恰当的公式以使计算更简便.如计算(a2+1) 2- (a21) 2,若分别展开后再相乘,则比较繁琐,若逆用积的乘方法则后再进一步计算,则非常简便.即原式 =(a2+1) (a21) 2= (a41) 2=a8-2a4+1.对数学公式只会顺向(从左到右)运用是远远不够的,还要注意逆向(从右到左)运用.如计算(1) (1)(1J)(1 )(1 2),若分别算出各因式的值后再行22342921
24、02相乘,不仅计算繁难,而且容易出错.若注意到各因式均为平方差的形式而逆用平方差公式,则可巧解本题.即原式=(11) (1+1) (11) (1+1) XX (1 1)(1+工)22331010="3x2x,-x Ax 11 = 2x11 = 11.2233101021020有时有些问题不能直接用乘法公式解决,而要用到乘法公式的变式,乘法公式的变式主要有:a2+b2= (a+b) 22ab, a2+b2= (a b) 2+2ab等.用这些变式解有关问题常能收到事半功倍之效.如已知 m+n=7, mn=- 18,求 m2+n2, m2mn+ n2的值.面对这样的问题就可用上述变式来解,
25、 22.2_2即 m+n = (m+n) -2mn=7 -2X ( 18) =49+36=85,m2 mn+ n2= (m+n) 23mn=72 3x ( 18) =103.下列各题,难不倒你吧? !1、若 a+1 =5,求(1)a2+J2,(2) (a 1 ) 2 的值. aaa2、求(2+1) ( 22+1) ( 24+1) ( 28+1 ) (216+1 ) ( 232+1 ) ( 264+1) +1 的末位数字.(答案:1. (1) 23; (2) 21. 2. 6)五、乘法公式应用的五个层次乘法公式:(a+b)(a b)=a2 b2, (a ± b尸a 2± 2a
26、b+b2,(a ± b)(a 2± ab+ b2)=a3± b3.第一层次正用即根据所求式的特征,模仿公式进行直接、简单的套用.例1计算(2)(2xy)(2x -y).解(1)原式二金-"2广一黯.i 二) I 乙 J 278(2)原式=(v) 2x( y) + 2x=y 24x2.第二层次逆用,即将这些公式反过来进行逆向使用.例2计算1998 2 1998 - 3994+ 19972;解 原式=19982 2 1998 1997 + 19972 =(1998 1997) 2=1原式=1-T扑用卜司I周卜硼蝴H斓1324810911 112 * 2 *
27、3 * 3 * 9 * T * W * 10 = 20第三层次活用 :根据待求式的结构特征,探寻规律,连续反复使用乘法公式;有 时根据需要创造条件,灵活应用公式.例 3 化简:(2 + 1)(2 2+ 1)(2 4+ 1)(2 8+ 1) + 1.分析直接计算繁琐易错,注意到这四个因式很有规律,如果再增添一个因式“2-1”便可连续应用平方差公式,从而问题迎刃而解.解原式=(2 1)(2 + 1)(2 2+ 1)(2 4+ 1)(2 8+ 1) + 1=(2 2 1)(2 2+ 1)(2 4+ 1)(2 8+ 1) + 1=2,例 4 计算:(2x -3y- 1)( -2x-3y + 5)分析仔
28、细观察,易见两个因式的字母部分与平方差公式相近,但常数不符.于是可创造 条件一“拆”数:1=23, 5=2+3,使用公式巧解.解原式=(2x 3y3+ 2)( 2x 3y + 3+2)二(2 3y) + (2x 3)(2 3y) - (2x 3)=(2 - 3y) 2- (2x 3)2=9y24x2+12x12y 5.第四层次变用:解某些问题时,若能熟练地掌握乘法公式的一些恒等变形式,如a2+ b2=(a + b)2 2ab, a3+b3=(a + b)3 3ab(a + b)等,则求解十分简单、明快.例 5 已知 a+b=9, ab=14,求 2a2+2b2 和 a3+b3的值.解: , a
29、+b=9, ab=14, . 2a2 + 2b2=2(a + b)22ab=2(9 22 14)=106 ,a3+ b3=(a + b)3 3ab(a + b)=9 33 - 14 - 9=351第五层次综合后用:将(a + b) =a + 2ab + b和(a b) =a 2ab+ b综合,可得(a + b)2+ (a b) 2=2(a 2 + b2); (a + b) 2 (a b) 2=4ab ;等,合理地利用这些公式处理某些问题显得新颖、简捷.例 6 计算:(2x + y z + 5)(2x y+ z + 5).解:原式=(2x+y-z+5)+(2x-y+z+5)- - (2x+y-z
30、+5)-(2x-y+z+5)=(2x + 5)2 (y z) 2=4x2+ 20x+ 25 y2+ 2yz z2六、正确认识和使用乘法公式1、数形结合的数学思想认识乘法公式:对于学习的两种(三个)乘法公式:平方差公式:(a+b)(a-b尸a 2-b2、完全平方公式:(a+b) 2=a2+2ab+b2 ; (a-b) 2=a2-2ab+b 2,可以运用数形结合的数学思想方法来区分它们。假设 a、b都是正数,那么可以用以下图形所示意的面积来认识乘法公式。如图1,两个矩形的面积之和(即阴影部分的面积)为(a+b)(a-b),通过左右两图的对照,即可得到平方差公式 (a+b)(a-b)=a 2-b2;
31、图2中的两个图阴影部分面积分别为(a+b) 2与(a-b) 2,通过面积的计算方法,即可得到两个完全平方公式:(a+b) 2=a2+2ab+b2与(a-b)2=a2-2ab+b2o2、乘法公式的使用技巧:提出负号:对于含负号较多的因式,通常先提出负号,以避免负号多带来的麻烦。例1、 运用乘法公式计算:,、一一,一、 一22-(3x) 2=1-9x2.(1) (-1+3x)(-1-3x);(2) (-2m-1)解:(1) (-1+3x)(-1-3x)=-(1-3x)-(1+3x)=(1-3x)(1+3x)=1(2) (-2m-1) 2=-(2m+1) 2=(2m+1)2= 4m (x-1/2)(
32、x2+1/4)(x+1/2)= (x-1/2) )(x+1/2)(x+4m+1.改变顺序:运用交换律、结合律,调整因式或因式中各项的排列顺序,可以使公式 的特征更加明显.例2、 运用乘法公式计算:(2) (x1/2)(x2+1/4)(x+1/2)./、1 1斛:(1) (3a-4b )(-1b a )=(- 1b+ 1a )(- (1a1b )( 1b a ); 3 443b - -a )43)( 43a)( 43a)=(产 3a )( 4b+ 3a 网-a 1692+1/4)=(x 2-1/4) (x 2+1/4)= x 2-1/16.逆用公式将哥的公式或者乘法公式加以逆用,比如逆用平方差公
33、式,得a2-b2 = (a+b)(a-b),逆用积的乘方公式,得anbn=(ab) n,等等,在解题时常会收到事半功倍的效果。例3、计算:(1) (x/2+5) 2-(x/2-5)2 ;(2) (a-1/2) 2(a 2+1/4) 2(a+1/2) 2解:(1) (x/2+5) 2-(x/2-5)2 =(x/2+5)+(x/2-5) (x/2+5)-(x/2-5)=(x/2+5+x/2-5)( x/2+5-x/2+5)=x- 10=10x.(2) (a-1/2) 2(a 2+1/4) 2(a+1/2) 2=(a-1/2)(a2+1/4) (a+1/2) 2 =(a-1/2) (a+1/2) (
34、a2+1/4) 2=(a 2-1/4 ) (a 2+1/4) 2 =(a 4-1/16 ) 2 =a8-a 4/8+1/256.合理分组:对于只有符号不同的两个三项式相乘,一般先将完全相同的项调到各因式的前面,视为一组;符号相反的项放在后面,视为另一组;再依次用平方差公式与完全平方公式进行计算。计算:(1) (x+y+1)(1-x-y);(2) (2x+y-z+5)(2x-y+z+5).2-(x+y) 2解:(1) (x+y+1)(1-x-y)=(1+x+y)(1-x-y)= 1+(x+y)1-(x+y)=1 =1-(x 2+2xy+y2)= 1-x 2-2xy-y 2.(2) (2x+y-z
35、+5)(2x-y+z+5)=(2x+5+y-z)(2x+5-y+z)=(2x+5)+(y-z)(2x+5)-(y-z) =(2x+5) 2-(y-z) 2 =(4x 2+20x+25)-(y 2-2yz+z 2)=4x 2+20x+25-y 2+2yz-z 2 = 4x 2-y 2-z 2+2yz +20x+25 .七、巧用公式做整式乘法整式乘法是初中数学的重要内容,是今后学习的基础,应用极为广泛。尤其多项式乘 多项式,运算过程复杂,在解答中,要仔细观察,认真分析题目中各多项式的结构特征,将 其适当变化,找出规律,用乘法公式将其展开,运算就显得简便易行。一.先分组,再用公式例 1.计算:(a-
36、b+c-d)(a-b-c-d)简析:本题若以多项式乘多项式的方法展开,则显得非常繁杂。通过观察,将整式(a-b+c-d)运用加法交换律和结合律变形为(叱-d)+(a + c);将另一个整式( bc d)变形为(bd) (a+c),则从其中找出了特点, 从而利用平方差公式即 可将其展开。解:原式=1(_b _ d) (a c) .11 -b - d . a c .1二(-b - d)2 - (a c)22222二b2 2bd - d2 -a2 -2ac -c2二.先提公因式,再用公式例2.计算:y r 8x+H4x -、4)2出来,变为24x简析:通过观察、比较,不难发现,两个多项式中的x的系数
37、成倍数,y的系数也成倍数,而且存在相同的倍数关系, 若将第一个多项式中各项提公因数 则可利用乘法公式。解:原式=2 4x + - ( 4x -<4 人4>2 y32x -83 .先分项,再用公式例 3.计算:(2x+3y+2'j(2x3y+6)简析:两个多项中似乎没多大联系,但先从相同未知数的系数着手观察,不难发现,x的系数相同,y的系数互为相反数,符合乘法公式。进而分析如何将常数进行变化。若将2分解成4与-2的和,将6分解成4与2的和,再分组,则可应用公式展开。解:原式二«2x 4) -(2 - 3y) I1 2x 42 - 3y 1= (2x+4)2 -(2-
38、3y f22= 4x2 16x 12 12y -9y24 .先整体展开,再用公式l(a - 2b) 11,再将例 4.计算:(a +2b)(a 2b+1)简析:乍看两个多项式无联系,但把第二个整式分成两部分,即第一个整式与之相乘,利用平方差公式即可展开。解:原式=(a 2b) (a -2b) ll=(a 2b)(a -2b) (a 2b)2. 2=a -4b a 2b五.先补项,再用公式例 5.计算:3 +(38 +1)(34 + 1)(32 + 1)(3+ 1)简析:由观察整式(3+1),不难发现,若先补上一项(3-1),则可满足平方差公式。多次利用平方差公式逐步展开,使运算变得简便易行。解
39、:原式=3( 381)(341)(321)(3 F")23 (381)(341)(321)(32 -1)32(381)(341)(34 - 1)323 . (381)(38 -1)232六.先用公式,再展方例6.计算:简析:第一个整式 J-2 |可表示为12 -由简单的变化,可看出整式符合平方差公式,其它因式类似变化,进一步变换成分数的积,化简即可。11K 1)<1 + wA1-wJ_ 314253 -119 _ 11223344101020七.乘法公式交替用例 7.计算:(x+z)(x2 - 2xz+z2)(x-z)(x2 +2xz + z2)简析:利用乘法交换律,把第一个整式和第四个整式结合在一起,把第二个整式与第三个整式结合,则可利用乘法公式展开。解:原式=|(x z)(x2 - 2xz - z2) ll(x2 -2xz - z2)(x -z)-l(x z)(x - z)2 ,H(x - z)2(x - z)=(x z)3(x-z)3-(x z)(x -z)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 荆州理工职业学院《中医养生康复学》2023-2024学年第二学期期末试卷
- 山东省临沂市莒南县市级名校2024-2025学年初三模拟考试(二)英语试题试卷含答案
- 南宁学院《书法艺术》2023-2024学年第一学期期末试卷
- 江苏农牧科技职业学院《中医典籍导读》2023-2024学年第一学期期末试卷
- 2025年图书馆信息学专业考试试题及答案
- 2025年营销专员职业能力考试试题及答案
- 2025年数字媒体艺术专业入学考试试卷及答案
- 四川传媒学院《景观设计方法Ⅰ》2023-2024学年第二学期期末试卷
- 内蒙古科技大学《资源加工工程设计》2023-2024学年第一学期期末试卷
- 天津海运职业学院《英语新闻选读》2023-2024学年第一学期期末试卷
- 外贸英语词汇
- 中级出版专业技术人员职业资格2025年笔试题库附答案
- 2025年浙江省衢州市中考一模英语试题(原卷版+解析版)
- 专利代缴年费合同协议
- 《腾讯战略投资》课件
- 2024中国国新基金管理有限公司相关岗位招聘7人笔试参考题库附带答案详解
- 2025届浙江省杭州市高三下学期二模物理试题(原卷版+解析版)
- 登高车安全培训
- 成人重症患者颅内压增高防控护理专家共识(2024版)解读课件
- 在线监测运维管理体系
- 大型活动安全保障职责与分工
评论
0/150
提交评论