




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 “恒成立问题”与“存在性问题”的基本解题策略一、“恒成立问题”与“存在性问题”的基本类型恒成立、能成立、恰成立问题的基本类型1、恒成立问题的转化:恒成立;2、能成立问题的转化:能成立;3、恰成立问题的转化:在M上恰成立的解集为M另一转化方法:若在D上恰成立,等价于在D上的最小值,若在D上恰成立,则等价于在D上的最大值.4、 设函数、,对任意的,存在,使得,则5、设函数、,对任意的,存在,使得,则6、设函数、,存在,存在,使得,则7、设函数、,存在,存在,使得,则8、设函数、,对任意的,存在,使得,设f(x)在区间a,b上的值域为A,g(x)在区间c,d上的值域为B,则AÌB.9、若
2、不等式在区间D上恒成立,则等价于在区间D上函数和图象在函数图象上方;10、若不等式在区间D上恒成立,则等价于在区间D上函数和图象在函数图象下方;恒成立问题的基本类型 在数学问题研究中经常碰到在给定条件下某些结论恒成立的命题.函数在给定区间上某结论成立问题,其表现形式通常有:j在给定区间上某关系恒成立;k某函数的定义域为全体实数R;l某不等式的解为一切实数;m某表达式的值恒大于a等等恒成立问题,涉与到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。因此也成为历年高考的一个热点。恒成立
3、问题在解题过程致可分为以下几种类型:一次函数型;二次函数型;变量分离型;根据函数的奇偶性、周期性等性质;直接根据函数的图象。二、恒成立问题解决的基本策略 大家知道,恒成立问题分等式中的恒成立问题和不等式中的恒成立问题。等式中的恒成立问题,特别是多项式恒成立问题,常简化为对应次数的系数相等从而建立一个方程组来解决问题的。(一)两个基本思想解决“恒成立问题”思路1、思路2、如何在区间D上求函数f(x)的最大值或者最小值问题,我们可以通过习题的实际,采取合理有效的方法进行求解,通常可以考虑利用函数的单调性、函数的图像、二次函数的配方法、三角函数的有界性、均值定理、函数求导等等方法求函数f(x)的最值
4、。这类问题在数学的学习涉与的知识比较广泛,在处理上也有许多特殊性,也是近年来高考中频频出现的试题类型,希望同学们在日常学习中注意积累。(二)、赋值型利用特殊值求解等式恒成立问题等式中的恒成立问题,常常用赋值法求解,特别是对解决填空题、选择题能很快求得.例1如果函数y=f(x)=sin2x+acos2x的图象关于直线x= 对称,那么a=( ).A.1 B.-1 C . D. -.略解:取x=0与x=,则f(0)=f(),即a=-1,故选B.此法体现了数学中从一般到特殊的转化思想.例(备用)由等式x4+a1x3+a2x2+a3x+a4= (x+1)4+b1(x+1)3+ b2(x+1)2+b3(x
5、+1)+b4 定义映射f:(a1,a2,a3,a4)b1+b2+b3+b4,则f:(4,3,2,1) ( )A.10 B.7 C.-1 D.0略解:取x=0,则 a4=1+b1+b2+b3+b4,又 a4=1,所以b1+b2+b3+b4 =0 ,故选D(三)分清基本类型,运用相关基本知识,把握基本的解题策略1、一次函数型:若原题可化为一次函数型,则由数形结合思想利用一次函数知识求解,十分简捷给定一次函数y=f(x)=ax+b(a0),若y=f(x)在m,n恒有f(x)>0,则根据函数的图象(直线)可得上述结论等价于 同理,若在m,n恒有f(x)<0, 则有 nmoxynmoxy例2
6、对于满足|a|2的所有实数a,求使不等式x2+ax+1>2a+x恒成立的x的取值围.分析:在不等式中出现了两个字母:x与a,关键在于该把哪个字母看成是一个变量,另一个作为常数.显然可将a视作自变量,则上述问题即可转化为在-2,2关于a的一次函数大于0恒成立的问题.解:原不等式转化为(x-1)a+x2-2x+1>0在|a|2时恒成立,设f(a)= (x-1)a+x2-2x+1,则f(a)在-2,2上恒大于0,故有:即解得:x<-1或x>3. 即x(,1)(3,+)此类题本质上是利用了一次函数在区间m,n上的图象是一线段,故只需保证该线段两端点均在x轴上方(或下方)即可.2
7、、二次函数型涉与到二次函数的问题是复习的重点,同学们要加强学习、归纳、总结,提炼出一些具体的方法,在今后的解题中自觉运用。(1)若二次函数y=ax2+bx+c(a0)大于0恒成立,则有(2)若是二次函数在指定区间上的恒成立问题,可以利用韦达定理以与根的分布知识求解。类型1:设在R上恒成立,(1) 上恒成立;(2)上恒成立。类型2:设在区间上恒成立(1) 当时,上恒成立,上恒成立(2) 当时,上恒成立上恒成立类型3:设在区间 (- , a上恒成立。f(x)>0Ûa>0且D<0或-b/2a>a且f(a)>0f(x)<0Ûa<0且D<
8、;0或-b/2a>a且f(a)<0类型4:设在区间 a,+)上恒成立。f(x)>0Ûa>0,D<0或-b/2a<a且f(a)>0f(x)<0Ûa<0,D<0或-b/2a<a且f(a)<0例3 若函数的定义域为R,数 的取值围.分析:该题就转化为被开方数在R上恒成立问题,并且注意对二次项系数的讨论.解:依题意,当恒成立,所以,当此时当有综上所述,f(x)的定义域为R时,例4.已知函数,在R上恒成立,求的取值围.分析:的函数图像都在X轴与其上方,如右图所示:略解:变式1:若时,恒成立,求的取值围.解析一.
9、(零点分布策略) 本题可以考虑f(x)的零点分布情况进行分类讨论,分无零点、零点在区间的左侧、零点在区间的右侧三种情况,即0或或,即a的取值围为-7,2.解法二分析:(运用二次函数极值点的分布分类讨论)要使时,恒成立,只需的最小值即可.略解:(分类讨论),令在上的最小值为.当,即时, 又不存在.当,即时, 又当,即时, 又综上所述,.变式2:若时,恒成立,求的取值围.解法一:分析:题目中要证明在上恒成立,若把2移到等号的左边,则把原题转化成左边二次函数在区间时恒大于等于0的问题.例2 已知,若恒成立,求a的取值围.22略解:,即在上成立.综上所述,.解法二:(运用二次函数极值点的分布) 当,即
10、时,不存在.当,即时,当,即时,综上所述.此题属于含参数二次函数,求最值时,对于轴变区间定的情形,对轴与区间的位置进行分类讨论;还有与其相反的,轴动区间定,方法一样.对于二次函数在R上恒成立问题往往采用判别式法(如例4、例5),而对于二次函数在某一区间上恒成立问题往往转化为求函数在此区间上的最值问题3、变量分离型若在等式或不等式中出现两个变量,其中一个变量的围已知,另一个变量的围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解。运用不等式的相关知识不难推出如下结论:若对于x取值围的任何一个数都有f(x)>g(a)恒成立,则g(a)&
11、lt;f(x)min;若对于x取值围的任何一个数,都有f(x)<g(a)恒成立,则g(a)>f(x)max.(其中f(x)max和f(x)min分别为f(x)的最大值和最小值)例5.已知三个不等式,要使同时满足的所有x的值满足,求m的取值围.略解:由得2<x<3,要使同时满足的所有x的值满足,即不等式在上恒成立,即上恒成立,又所以 例6. 函数是奇函数,且在上单调递增,又,若 对所有的都成立,求的取值围 .解:据奇函数关于原点对称,又对所有的都成立.因此,只需大于或等于的最大值1,即关于a的一次函数在-1,1上大于或等于0恒成立,即: 利用变量分离解决恒成立问题,主要是
12、要把它转化为函数的最值问题补例 已知若,且对任何不等式恒成立,数的取值围解:当时,取任意实数,不等式恒成立,故只需考虑,此时原不等式变为即故又函数在上单调递增,所以;对于函数当时,在上单调递减,又,所以,此时的取值围是 当,在上,当时,此时要使存在,必须有 即,此时的取值围是综上,当时,的取值围是;当时,的取值围是;当时,的取值围是4、根据函数的奇偶性、周期性等性质若函数f(x)是奇(偶)函数,则对一切定义域中的x ,f(-x)=-f(x)(f(-x)=f(x)恒成立;若函数y=f(x)的周期为T,则对一切定义域中的x,f(x)=f(x+T)恒成立。5、直接根据图象判断若把等式或不等式进行合理
13、的变形后,能非常容易地画出等号或不等号两边函数的图象,则可以通过画图直接判断得出结果。尤其对于选择题、填空题这种方法更显方便、快捷。例7. 的取值围.分析:设y=|x+1|-|x-2|,即转化为求函数y=|x+1|-|x-2|的最小值,画出此函数的图象即可求得a的取值围.解:令在直角坐标系中画出图象如图所示,由图象可看出,要使只需.故实数注:本题中若将改为,同样由图象可得a>3;,构造函数,画出图象,得a<3.利用数形结合解决恒成立问题,应先构造函数,作出符合已知条件的图形,再考虑在给定区间上函数与函数图象之间的关系,得出答案或列出条件,求出参数的围.例8. 设常数aR,函数f(x
14、)=3|x|+|2x-a|,g(x)=2-x.若函数y=f(x)与y=g(x)的图像有公共点,则a的取值围为。解:1)a<=0x<=a/2<=0时,f(x)=-3x+(-2x+a)=-5x+aa/2<=x<=0时,f(x)=-3x+(2x-a)=-x-ax>=0时,f(x)=3x+(2x-a)=5x-a,最小值为-a<=2则与g(x)有交点,即:-2<=a<=0。2)a>0x<=0时,f(x)=-3x+(-2x+a)=-5x+a0<=x<=a/2时,f(x)=3x+(-2x+a)=x+ax>=a/2时,f(x)
15、=3x+(2x-a)=5x-a最小值a<=2时与g(x)有交点,即:0<a<=2综上所述,-2<=a<=2时f(x)=3|x|+|2x-a|与g(x)=2-x有交点。三、在恒成立问题中,主要是求参数的取值围问题,是一种热点题型,介绍一些基本的解题策略,在学习中学会把问题分类、归类,熟练基本方法。(一)换元引参,显露问题实质 1、对于所有实数x,不等式恒成立,求a的取值围。解:因为的值随着参数a的变化而变化,若设,则上述问题实质是“当t为何值时,不等式恒成立”。这是我们较为熟悉的二次函数问题,它等价于求解关于t的不等式组:。 解得,即有,易得。2、设点P(x,y)是
16、圆上任意一点,若不等式x+y+c0恒成立,数c的取值围。(二)分离参数,化归为求值域问题 3、若对于任意角总有成立,求m的围。解:此式是可分离变量型,由原不等式得,又,则原不等式等价变形为恒成立。根据边界原理知,必须小于的最小值,这样问题化归为怎样求的最小值。因为 即时,有最小值为0,故。(三)变更主元,简化解题过程 4、若对于,方程都有实根,根的围。解:此题一般思路是先求出方程含参数m的根,再由m的围来确定根x的围,但这样会遇到很多麻烦,若以m为主元,则, 由原方程知,得 又,即解之得或。5、当时,若不等式恒成立,求的取值围。(四)图象解题,形象直观 6、设,若不等式恒成立,求a的取值围。解
17、:若设,则为上半圆。设,为过原点,a为斜率的直线。在同一坐标系 作出函数图象依题意,半圆恒在直线上方时,只有时成立,即a的取值围为。7、当x(1,2)时,不等式(x-1)2<logax恒成立,求a的取值围。解:设y1=(x-1)2,y2=logax,则y1的图象为右图所示的抛物线要使对一切x (1,2),y1<y2恒成立,显然a>1,并且必须也只需当x=2时y2的函数值大于等于y1的函数值。故loga2>1, 1<a2.8、已知关于x的方程lg(x2+4x)-lg(2x-6a-4)=0有唯一解,数a的取值围。分析:方程可转化成lg(x2+4x)=lg(2x-6a-
18、4),从而得x2+4x=2x-6a-4>0,注意到若将等号两边看成是二次函数y= x2+4x与一次函数y=2x-6a-4,则只需考虑这两个函数的图象在x轴上方恒有唯一交点即可。解:令y1=x2+4x=(x+2)2-4,y2=2x-6a-4, y1的图象为一个定抛物线 y2的图象是k=2,而截距不定的直线,要使y1和y2在x轴上方有唯一交点,则直线必须位于l1和l2之间。(包括l1但不包括l2)当直线为l1时,直线过点(-4,0),此时纵截距为-8-6a-4=0,a=;当直线为l2时,直线过点(0,0),纵截距为-6a-4=0,a=a的围为(五)合理联想,运用平几性质 9、不论k为何实数,
19、直线与曲线恒有交点,求a的围。分析:因为题设中有两个参数,用解析几何中有交点的理论将二方程联立,用判别式来解题是比较困难的。若考虑到直线过定点A(0,1),而曲线为圆,圆心C(a,0),要使直线恒与圆有交点,那么定点A(0,1)必在圆上或圆。解:,C(a,0),当时,联想到直线与圆的位置关系,则有点A(0,1)必在圆上或圆,即点A(0,1)到圆心距离不大于半径,则有,得。(六)分类讨论,避免重复遗漏 10、当时,不等式恒成立,求x的围。解:使用的条件,必须将m分离出来,此时应对进行讨论。当时,要使不等式恒成立,只要, 解得。当时,要使不等式恒成立,只要,解得。当时,要使恒成立,只有。 综上得。
20、解法2:可设,用一次函数知识来解较为简单。我们可以用改变主元的办法,将m视为主变元,即将元不等式化为:,;令,则时,恒成立,所以只需即,所以x的围是。此类题本质上是利用了一次函数在区间m,n上的图象是一线段,故只需保证该线段两端点均在x轴上方(或下方)即可.11、当时,不等式恒成立,数的取值围。解:当时,当,即时等号成立。故实数的取值围:(七)构造函数,体现函数思想 12、(1990年全国高考题)设,其中a为实数,n为任意给定的自然数,且,如果当时有意义,求a的取值围。解:本题即为对于,有恒成立。这里有三种元素交织在一起,结构复杂,难以下手,若考虑到求a的围,可先将a分离出来,得,对于恒成立。
21、构造函数,则问题转化为求函数在上的值域。由于函数在上是单调增函数,则在上为单调增函数。于是有的最大值为:,从而可得。(八)利用集合与集合间的关系在给出的不等式中,若能解出已知取值围的变量,就可利用集合与集合之间的包含关系来求解,即:,则且,不等式的解即为实数的取值围。例13、当时,恒成立,数的取值围。解:(1) 当时,则问题转化为(2) 当时,则问题转化为综上所得:或四、其它类型恒成立问题能成立问题有时是以不等式有解的形式出现的。1、已知函数,其中,对任意,都有恒成立,数的取值围;分析:思路、对在不同区间的两个函数和分别求最值,即只需满足即可简解:令n(a)=gmax(x)=a/2;令m(a)
22、=fmin(x),f(x)=(x-a)2+1-a2,故(1)对称轴x=a<1,即或0<a<1时,m(a)= fmin(x)=f(1)=2-2a,由m(a)>n(a) 解得a<4/5,(注意到a的围)从而得a的围:0<a<4/5;(2)对称轴x=a>2时,m(a)= fmin(x)=f(2)=5-4a,由m(a)>n(a) 解得a<10/9,(注意到a的围)从而得a无解:;(3)对称轴x=a1,2时,m(a)= fmin(x)=f(a)=2-2a,由m(a)>n(a) 解得或,(注意到a的围)从而得a的围:;综合(1)(2)(3)
23、知实数的取值围是:(0,4/5)1,22、已知两函数,对任意,存在,使得,则实数m的取值围为解析:对任意,存在,使得等价于在上的最小值不大于在上的最小值0,既,题型二、主参换位法(已知某个参数的围,整理成关于这个参数的函数)题型三、分离参数法(欲求某个参数的围,就把这个参数分离出来)题型四、数形结合(恒成立问题与二次函数联系(零点、根的分布法)五、不等式能成立问题(有解、存在性)的处理方法若在区间D上存在实数使不等式成立,则等价于在区间D上;若在区间D上存在实数使不等式成立,则等价于在区间D上的.1、存在实数,使得不等式有解,则实数的取值围为_。解:设,由有解,又,解得。1、求使关于p的不等式
24、在p-2,2有解的x的取值围。解:即关于p的不等式有解,设,则在-2,2上的最小值小于0。(1)当x>1时,f(p)关于p单调增加,故fmin(p)=f(-2)=x2-4x+3<0,解得1<x<3;2222(2) 当x<1时,f(p)关于p单调减少,故fmin(p)=f(2)=x2-1<0,解得-1<x<1;(3)当x=1时,f(p)=0,故fmin(p)=f(p)<0不成立。综合(1)(2)(3)知实数x的取值围是:(-1,1)(1,3)例、设命题P:x1,x2是方程x2-ax-2=0的二个根,不等式|m2-5m-3|x1-x2|对任意实
25、数a-1,1恒成立;命题Q:不等式|x-2m|-|x|>1(m>0)有解;若命题P和命题Q都是真命题,求m的值围。解:(1)由P真得:,注意到a在区间-1,1, ,由于|m2-5m-3|x1-x2|对任意实数a-1,1恒成立,故有解得: m-1或m6或0m5(1)由Q真,不等式|x-2m|-|x|>1(m>0)有解,得(|x-2m|-|x|)max=2m>1,解得:m>1/2由于(1)(2)都是相公命题,故m的值围:1/2<m5或m6.举例(1)已知不等式对于)恒成立,数的取值围.(2)若不等式对于恒成立,数的取值围.分析:(1)由得:对于)恒成立,因
26、,所以,当时等号成立.所以有.(2)注意到对于恒成立是关于的一次不等式.不妨设,则在上单调递减,则问题等价于,所以或,则取值围为.小结:恒成立与有解的区别:恒成立和有解是有明显区别的,以下充要条件应细心思考,甄别差异,恰当使用,等价转化,切不可混为一体。不等式对时恒成立,。即的上界小于或等于;不等式对时有解,。 或的下界小于或等于;不等式对时恒成立,。即的下界大于或等于;不等式对时有解,.。 或的上界大于或等于;高中数学难点强化班第四讲(140709)课后练习答案:一填空选择题(每小题6分,共60分)1、对任意的实数,若不等式恒成立,那么实数的取值围。答案:|x+1|-|x-2|³
27、-|(x+1)-(x-2)|=-3,故实数的取值围:a<-32、不等式有解,则的取值围是解:原不等式有解有解,而,所以。3.若对任意,不等式恒成立,则实数的取值围是()O(A) (B) (C) (D)解析:对,不等式恒成立则由一次函数性质与图像知,即。答案:选B4当时,不等式恒成立,则的取值围是.解析: 当时,由得.令,则易知在上是减函数,所以时,则.5已知不等式对任意都成立,那么实数的取值围为分析:已知参数的围,要求自变量的围,转换主参元和的位置,构造以为自变量作为参数的一次函数,转换成,恒成立再求解。解析:由题设知“对都成立,即对都成立。设(),则是一个以为自变量的一次函数。恒成立,则对,为上的单调递增函数。 所以对,恒成立的充分必要条件是,于是的取值围是。6已知函数,若对于任一实数,与的值至少有一个为正数,则实数的取值围是( )A(0,2) B(0,8)C(2,8) D(,0)分析:与的函数类型,直接受参数的影响,所以首先要对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年工厂员工安全培训考试试题及答案【考点梳理】
- 2024-2025公司安全培训考试试题(ab卷)
- 工程项目的管理信息技术试题及答案
- 2025年工程经济典型案例试题及答案
- 政府在市场中的作用试题及答案
- 公共关系信息传播路径的选择试题及答案
- 行政管理中公共关系学的重要性探讨试题及答案
- 深度理解水利水电试题及答案技巧
- 2025-2030年证券行业风险投资发展分析及运作模式与投融资研究报告
- 2025年经济法概论考试心得交流与试题及答案
- 输变电工程监督检查标准化清单-质监站检查
- GB/T 26718-2024城市轨道交通安全防范系统技术要求
- 《心房颤动》课件
- 静脉输液操作考试流程
- 校园艺术团指导教师聘用合同
- 护理记录与交班制度
- 2024-2030年中国海外医疗中介服务行业运行现状及投资潜力分析报告
- 幼儿园应急疏散演练
- 电力线路改迁工程预算方案
- 《家庭安全用电培训》课件
- 物理化学知到智慧树章节测试课后答案2024年秋华东理工大学
评论
0/150
提交评论