版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第第23章章 一元二次方程复习一元二次方程复习郸城县英才学校数学课件 主主教教讲讲师:郭卫彬师:郭卫彬 第一关知识要点说一说一一元元二二次次方方程程一元二次方程的定义一元二次方程的定义一元二次方程的解法一元二次方程的解法一元二次方程的应用一元二次方程的应用方程两边都是整式方程两边都是整式ax+bx+c=0ax+bx+c=0(a a 0 0)只含有一个未知数只含有一个未知数求知数的最高次数是求知数的最高次数是2 2配配 方方 法法求求 根根 公式法公式法直接开平方法直接开平方法因因 式式 分解法分解法224204bbacbxcaa当时 ,0 00ABAB化 成或20 xm mxm 化成二次项系数
2、为二次项系数为1,而一次项系数为偶数,而一次项系数为偶数20 0axbxca化 成 一 般 形 式第二关基础题目轮一轮判断下列方程是不是一元二次方程,若不是一元二判断下列方程是不是一元二次方程,若不是一元二次方程,请说明理由?次方程,请说明理由?1、(x1) 、x22x=8、xy+5、xx6、ax2 + bx + c3、x2+ x1一元二次方程的一般式一元二次方程的一般式0 0c cb bx xa ax x2 2(a0a0) 一元二次方程一元二次方程一般形式一般形式二次项二次项系数系数一次项一次项系数系数常数常数项项 3x 3x=1=1 2y(y-3)= -43x-1=03x-1=03 32
3、2-6-6-1-14 40 02y2y2 2-6y+4=0-6y+4=02 22 2、若方程、若方程是关于是关于x x的一元二次方程,则的一元二次方程,则m m的值为的值为 。02) 1()2(22xmxmm3.3.若若x=2x=2是方程是方程x x2 2+ax-8=0+ax-8=0的解,则的解,则a=a= ; ;2 24、写出一个根为、写出一个根为2,另一个根为,另一个根为5的一元二次方的一元二次方程程 。1 1、若、若 是关于是关于x x的一元二次的一元二次方程则方程则m m 。02222xmxm 22、已知一元二次方程、已知一元二次方程x2=2x 的解是(的解是( )(A)0 (B)2
4、(C)0或或-2 (D)0或或2 D 1、已知一元二次方程、已知一元二次方程(x+1)(2x1)=0的解是(的解是( )(A)-1 (B)1/2 (C)-1或或-2 (D)-1或或1/2 D 第三关典型例题显一显用适当的方法解下列方程用适当的方法解下列方程 24310 xx 2130 xx 22 (21)90 x 2341xx 2130 xx因式分解法:因式分解法:1.1.用因式分解法的用因式分解法的条件条件是是: :方程左边能方程左边能够分解为两个因式的积够分解为两个因式的积, ,而右边等于而右边等于0 0的的方程方程; ;2.2.形如形如: :ax2+bx=o(即常数即常数C=0). .因
5、式分解法的一因式分解法的一般般步骤步骤: :一移一移-方程的右边方程的右边=0;=0;二分二分-方程的左边因式分解方程的左边因式分解; ;三化三化-方程化为两个一元一次方程方程化为两个一元一次方程; ;四解四解-写出方程两个解写出方程两个解; ; 22 (21)90 x直接开平方法:直接开平方法:1.1.用开平方法的用开平方法的条件条件是是: :缺少一次项的缺少一次项的一元二次方程,用开平方法比较方便一元二次方程,用开平方法比较方便; ;2.2.形如形如: :ax2+c=o (即没有一次项即没有一次项). . a(x+m)2=k 2341xx配方法:配方法:用配方法的用配方法的条件条件是是:
6、:适应于任何一个适应于任何一个一元二次方程,但是在没有特别要求的一元二次方程,但是在没有特别要求的情况下,除了形如情况下,除了形如x2+2kx+c=0 用配方用配方法外,一般不用法外,一般不用;(;(即二次项系数为即二次项系数为1 1,一次项系数是偶数。)一次项系数是偶数。)配方法的一般配方法的一般步步骤骤: :一除一除-把把二次项系数二次项系数化为化为1(方程的两边同方程的两边同 时除以二次项系数时除以二次项系数a) 二移二移-把常数项移到方程的把常数项移到方程的右边右边;三配三配-把方程的左边配成一个把方程的左边配成一个完全平方式完全平方式;四开四开-利用利用开平方法开平方法求出原方程的两
7、个解求出原方程的两个解.一除、二移、三配、四开、五解一除、二移、三配、四开、五解. .公式法:公式法:用公式法的用公式法的条件条件是是: :适应于任何一个适应于任何一个一元二次方程,先将方程化为一般形式,一元二次方程,先将方程化为一般形式,再求出再求出b2-4ac的值,的值, b2-4ac0则方程有则方程有实数根,实数根, b2-4ac0 时,方程有两个不相等的实数根;时,方程有两个不相等的实数根;当当b2-4ac=0 时,方程有两个相等的实数根;时,方程有两个相等的实数根;当当b2-4ac0 时,方程没有实数根时,方程没有实数根. 公式法虽然是万能的,对任何一元二次方程都适用,公式法虽然是万
8、能的,对任何一元二次方程都适用,但不一定是最简单的,因此在解方程时我们首先考虑能否但不一定是最简单的,因此在解方程时我们首先考虑能否应用应用“直接开平方法直接开平方法”、“因式分解法因式分解法”等简单方法,若等简单方法,若不行,再考虑公式法(适当也可考虑配方法)不行,再考虑公式法(适当也可考虑配方法)125162 2x x (1)(1)2x52 2x x (2)(2)2 22 29 9x x) )- -( (x x ( (3 3) )24x132 2x x ( (4 4) )选择适当的方法解下列方程选择适当的方法解下列方程(5 5)x x(2x-72x-7)=2x=2x(6 6)x x+4x=
9、3+4x=3(7 7)x-5x=-4x-5x=-4 (8 8)2x2x -3x-1=0-3x-1=0(9) (x-1)(x+1)=x(10) x (2x+5)=2 (2x+5) (11) (2x1)2=4(x+3)2(12) 3(x-2)29=0第四关反败为胜选一选 已知方程已知方程x x2 2+kx = - 3 +kx = - 3 的一个根是的一个根是-1-1,则,则k=k= , , 另一根为另一根为_ _ 4 4x=-3x=-325 0 xx 21aa6若a为方程 的解,则 的值为 构造一个一元二次方程,要求:(1)常数项为零(2)有一根为2。22132yy解方程:223xxx解方程: 将
10、将4个数个数a、b、c、d排成排成2行行2列,两边各加一条竖线记成列,两边各加一条竖线记成 ,2 ababadbccdcd定义,这个式子叫做 阶行列式。x+1 x-1若=6则x=1-x x+12 m取什么值时,方程取什么值时,方程 x2+(2m+1)x+m2-4=0有有两个相等的实数解两个相等的实数解已知已知m m为非负整数,且关于为非负整数,且关于x x的一元二次方程的一元二次方程 :有两个实数根,求有两个实数根,求m m的值。的值。 02)32()2(2mxmxm说明:当二次项系数也含有待定的字母时,要注意说明:当二次项系数也含有待定的字母时,要注意二次项系数不能为二次项系数不能为0 0,还要注意题目中待定字母的取,还要注意题目中待定字母的取值范围值范围. .解得:解得:解:解:方程有两个实数根方程有两个实数根21212mm且m为非负数m=0或m=10)2)(2(4)32(2mmm02m且且m为非负整数为非负整数你说我说大家说:你说我说大家说: 通过今天的学习你有什通过今天的学习你有什么收获或感受?么收获或感受?一一元元二二次次方方程程一元二次方程的定义一元二次方程的定义一元二次方程的解法一元二次方程的解法一元二次方程的应用一元二次方程的应用方程两边都是整式方程两边都是整式ax+bx+c=0ax+bx+c=0(a a 0 0)只含有一个未知数只含有一个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年智能关节活动监测仪项目可行性研究报告
- 牧原集团培训课件
- 2025年山东省枣庄市中考历史真题卷含答案解析
- 2025年电影城年度工作总结例文
- 农村电力网升级改造工程危险点、薄弱环节分析预测及预防措施
- 2025年工程测量员(三级)测绘工程安全文明施工考试试卷及答案
- 林场采伐作业实施方案
- 2025安全培训试题及答案
- 2025年企业挂职锻炼年度工作总结范例(二篇)
- 建设工程施工合同纠纷要素式起诉状模板告别反复修改
- 上腔静脉综合征患者的护理专家讲座
- 免责协议告知函
- 部编版八年级上册语文《期末考试卷》及答案
- 医院信访维稳工作计划表格
- 蕉岭县幅地质图说明书
- 地下车库建筑结构设计土木工程毕业设计
- (完整word版)人教版初中语文必背古诗词(完整版)
- GB/T 2261.4-2003个人基本信息分类与代码第4部分:从业状况(个人身份)代码
- GB/T 16601.1-2017激光器和激光相关设备激光损伤阈值测试方法第1部分:定义和总则
- PDM结构设计操作指南v1
- 投资学-课件(全)
评论
0/150
提交评论