版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、二、对坐标的曲线积分的概念;三、对坐标的曲线积分的计算;一、问题的提出;第三节 对坐标的曲线积分oxyABL一、问题的提出1 nMiM1 iM2M1Mix iy 实例实例: : 变力沿曲线所作的功变力沿曲线所作的功,:BALjyxQiyxPyxF),(),(),( 常力所作的功常力所作的功分割分割.),(,),(,1111110BMyxMyxMMAnnnn 1()() .iiiiMMx iyj .ABFW 求和求和. ),(),(1 niiiiiiiyQxP 取极限取极限. ),(),(lim10 niiiiiiiyQxPW 近似值近似值精确值精确值,),(),(),(jQiPFiiiiii
2、取取,),(1iiiiiMMFW .),(),(iiiiiiiyQxPW 即即 niiWW1oxyABL1 nMiM1 iM2M1M),(iiF ix iy 二、对坐标的曲线积分的概念11122211110111,( , ),( , ).( ,),(,),(,)(1,2, ;,).,( ,).nnniiniiiiiiiiiiLxoyABP x yQ x yLLMx yMxyMxyLnMMinMA MBxxxyyyMM 设 为面内从点 到点 的一条有向光滑曲线弧 函数在上有界 用 上的点把 分成 个有向小弧段设点为上任意取定的点 如果当各小弧段0,长度的最大值时1.定义定义.),(lim),(,
3、(),(,),(101iiniiLniiiixPdxyxPxLyxPxP 记作记作或称第二类曲线积分)或称第二类曲线积分)积分积分的曲线的曲线上对坐标上对坐标在有向曲线弧在有向曲线弧数数则称此极限为函则称此极限为函的极限存在的极限存在类似地定义类似地定义.),(lim),(10iiniiLyQdyyxQ ,),(),(叫做被积函数叫做被积函数其中其中yxQyxP.叫积分弧段叫积分弧段L2.存在条件:存在条件:.,),(),(第二类曲线积分存在第二类曲线积分存在上连续时上连续时在光滑曲线弧在光滑曲线弧当当LyxQyxP3.组合形式组合形式 LLLdyyxQdxyxPdyyxQdxyxP),(),
4、(),(),(.LF dr,.FPiQjdrdxidyj其中4.4.推广推广 空间有向曲线弧空间有向曲线弧.),(lim),(10iiiniixPdxzyxP . RdzQdyPdx.),(lim),(10iiiniiyQdyzyxQ .),(lim),(10iiiniizRdzzyxR 5.5.性质性质.,)1(2121 LLLQdyPdxQdyPdxQdyPdxLLL则则和和分分成成如如果果把把则则有有向向曲曲线线弧弧方方向向相相反反的的是是与与是是有有向向曲曲线线弧弧设设,)2(LLL 即对坐标的曲线积分与曲线的方向有关即对坐标的曲线积分与曲线的方向有关. LLdyyxQdxyxPdyy
5、xQdxyxP),(),(),(),(三、对坐标的曲线积分的计算22( , ),( , )( ),( ), ,( , ),( ),( ),( )( )0,( , )( , ),LP x y Q x yLxtLtytM x yLALBttttP x y dxQ x y dy设在曲线弧 上有定义且连续的参数方程为当参数 单调地由 变到时 点从 的起点 沿 运动到终点在以 及 为端点的闭区间上具有一阶连续导数 且则曲线积分存在定理定理dttttQtttPdyyxQdxyxPL)()(),()()(),(),(),( 且且特殊情形特殊情形.)(:)1(baxxyyL,终终点点为为起起点点为为 .)()
6、(,)(,dxxyxyxQxyxPQdyPdxbaL 则则.)(:)2(dcyyxxL,终终点点为为起起点点为为 .),()(),(dyyyxQyxyyxPQdyPdxdcL 则则.,)()()(:)3( 终点终点起点起点推广推广ttztytx dtttttRttttQttttPRdzQdyPdx)()(),(),()()(),(),()()(),(),( (4) 两类曲线积分之间的联系:两类曲线积分之间的联系:,)()( tytxL :设设有有向向平平面面曲曲线线弧弧为为,),( 为为处的切线向量的方向角处的切线向量的方向角上点上点yxL LLdsQPQdyPdx)coscos(则则其中其中
7、,)()()(cos22ttt ,)()()(cos22ttt (可以推广到空间曲线上(可以推广到空间曲线上 ) ,),( 为为处的切线向量的方向角处的切线向量的方向角上点上点zyx dsRQPRdzQdyPdx)coscoscos(则则 dstA rdA, dsAt可用向量表示可用向量表示,其其中中,RQPA ,cos,cos,cos t,dzdydxdstrd 有向曲线元;有向曲线元;.上上的的投投影影在在向向量量为为向向量量tAAt处的单位切向量处的单位切向量上点上点),(zyx 例例1.)1 , 1()1, 1(,2的一段弧的一段弧到到上从上从为抛物线为抛物线其中其中计算计算BAxyL
8、xydxL 解解的的定定积积分分,化化为为对对x)1(.xy OBAOLxydxxydxxydx 1001)(dxxxdxxx 10232dxx.54 xy 2)1, 1( A)1 , 1(B的定积分,的定积分,化为对化为对y)2(,2yx ABLxydxxydx 1122)(dyyyy. 11到到从从 y 1142dyy.54 xy 2)1, 1( A)1 , 1(B.)0 ,()0 ,()2(;)1(,2的的直直线线段段轴轴到到点点沿沿从从点点的的上上半半圆圆周周针针方方向向绕绕行行、圆圆心心为为原原点点、按按逆逆时时半半径径为为为为其其中中计计算算aBxaAaLdxyL 例例2解解,si
9、ncos:)1( ayaxL,变变到到从从 0)0 ,(aA)0 ,( aB 0原原式式 daa)sin(sin22 )0 ,(aA)0 ,( aB .343a , 0:)2( yL,变到变到从从aax aadx0原式原式. 0 问题问题:被积函数相同,起点和终点也相同,但:被积函数相同,起点和终点也相同,但路径不同积分结果不同路径不同积分结果不同. 03a)(cos)cos1(2 d 例例3).1 , 1(),0 , 1()0 , 0(,)3(;)1 , 1()0 , 0()2(;)1 , 1()0 , 0()1(,2222依依次次是是点点,这这里里有有向向折折线线的的一一段段弧弧到到上上从
10、从抛抛物物线线的的一一段段弧弧到到上上从从抛抛物物线线为为其其中中计计算算BAOOABBOyxBOxyLdyxxydxL 2xy )0 , 1(A)1 , 1(B解解.)1(的的积积分分化化为为对对 x, 10,:2变变到到从从xxyL 1022)22(dxxxxx原原式式 1034dxx. 1 ) 0 , 1 (A)1,1(B2yx .)2(的积分的积分化为对化为对 y,10,:2变到变到从从yyxL 1042)22(dyyyyy原原式式 1045dxy. 1 )0 , 1(A)1 , 1(B)3( ABOAdyxxydxdyxxydx2222原式原式,上上在在 OA,10, 0变变到到从从xy 1022)002(2dxxxdyxxydxOA. 0 ,上上在在 AB,10, 1变变到到从从yx 102)102(2dyydyxxydxAB. 1 10 原式原式. 1 ) 0 , 1 (A)1,1(B问题问题:被积函数相同,起点和终点也相同,但:被积函数相同,起点和终点也相同,但路径不同而积分结果相同路径不同而积分结果相同.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026河北衡水市第八中学招聘备考题库附答案
- 企业风险管理制度
- 2026湖北省定向北京师范大学选调生招录考试备考题库附答案
- 2026福建厦门轨道建设发展集团有限公司校园招聘备考题库附答案
- 2026福建省面向中国政法大学学生选调生选拔工作考试备考题库附答案
- 2026西安西京初级中学教师招聘参考题库附答案
- 2026贵州赫章县德卓镇卫生院招聘村医备考题库附答案
- 2026陕西理工科技发展有限公司招聘参考题库附答案
- 2026青海省海东市互助县城市管理综合行政执法局招聘参考题库附答案
- 中共玉环市委宣传部关于下属事业单位 市互联网宣传指导中心公开选聘1名工作人员的备考题库附答案
- GB/T 15231-2023玻璃纤维增强水泥性能试验方法
- ESC2023年心脏起搏器和心脏再同步治疗指南解读
- 五年级上册道德与法治期末测试卷推荐
- 重点传染病诊断标准培训诊断标准
- 超额利润激励
- GB/T 2624.1-2006用安装在圆形截面管道中的差压装置测量满管流体流量第1部分:一般原理和要求
- 兰渝铁路指导性施工组织设计
- CJJ82-2019-园林绿化工程施工及验收规范
- 小学三年级阅读练习题《鸭儿饺子铺》原文及答案
- 六宫格数独100题
- 厨房设施设备检查表
评论
0/150
提交评论