




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、初中数学中的基本思想、方法汇总要学好数学,学会解题是关键。在进行解题的过程中,不仅需要加强必要的训练,其还要掌握一定的解题规律与技巧。一、数学思想方法在解题中有不可忽视的作用解题的学习过程通常的程序是:阅读数学知识,理解概念;在对例题和老师的讲解进行反思,思考例题的方法、技巧和解题的规范过程;然后做数学练习题。1. 函数与方程的思想函数与方程的思想是中学数学最基本的思想。所谓函数的思想是指用运动变化的观点去分析和研究数学中的数量关系,建立函数关系或构造函数,再运用函数的图像与性质去分析、解决相关的问题。而所谓方程的思想是分析数学中的等量关系,去构建方程或方程组,通过求解或利用方程的性
2、质去分析解决问题。2. 数形结合的思想数与形在一定的条件下可以转化。如某些代数问题、三角问题往往有几何背景,可以借助几何特征去解决相关的代数三角问题;而某些几何问题也往往可以通过数量的结构特征用代数的方法去解决。因此数形结合的思想对问题的解决有举足轻重的作用。3. 分类讨论的思想分类讨论的思想之所以重要,原因一是因为它的逻辑性较强,原因二是因为它的知识点的涵盖比较广,原因三是因为它可培养学生的分析和解决问题的能力。原因四是实际问题中常常需要分类讨论各种可能性。解决分类讨论问题的关键是化整为零,在局部讨论降低难度。常见的类型:类型 1 :由数学概念引起的的
3、讨论,如实数、有理数、绝对值、点(直线、圆)与圆的位置关系等概念的分类讨论;类型 2 :由数学运算引起的讨论,如不等式两边同乘一个正数还是负数的问题;类型 3 :由性质、定理、公式的限制条件引起的讨论,如一元二次方程求根公式的应用引起的讨论;类型 4 :由图形位置的不确定性引起的讨论,如直角、锐角、钝角三角形中的相关问题引起的讨论。类型 5 :由某些字母系数对方程的影响造成的分类讨论,如二次函数中字母系数对图象的影响,二次项系数对图象开口方向的影响,一次项系数对顶点坐标的影响,常数项对截距的影响等。分类讨论思想是对
4、数学对象进行分类寻求解答的一种思想方法,其作用在于克服思维的片面性,全面考虑问题。分类的原则:分类不重不漏。分类的步骤:确定讨论的对象及其范围;确定分类讨论的分类标准;按所分类别进行讨论;归纳小结、综合得出结论。注意动态问题一定要先画动态图。4 转化与化归的思想转化与化归市中学数学最基本的数学思想之一,数形结合的思想体现了数与形的转化;函数与方程的思想体现了函数、方程、不等式之间的相互转化;分类讨论思想体现了局部与整体的相互转化,所以以上三种思想也是转化与化归思想的具体呈现。但是转化包括等价转化和非等价转化,等价转化要求在转化的过程中前因和后果是充分的也是必要的;不等价转化就只有一种
5、情况,因此结论要注意检验、调整和补充。转化的原则是将不熟悉和难解的问题转为熟知的、易解的和已经解决的问题,将抽象的问题转为具体的和直观的问题;将复杂的转为简单的问题;将一般的转为特殊的问题;将实际的问题转为数学的问题等等使问题易于解决。但是转化包括等价转化和非等价转化,等价转化要求在转化的过程中前因和后果是充分的也是必要的;不等价转化就只有一种情况,因此结论要注意检验、调整和补充。转化的原则是将不熟悉和难解的问题转为熟知的、易解的和已经解决的问题,将抽象的问题转为具体的和直观的问题;将复杂的转为简单的问题;将一般的转为特殊的问题;将实际的问题转为数学的问题等等使问题易于解决。常见的转化方法有(
6、 1 )直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题 .( 2 )换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题 .( 3 )数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径 . ( 4 )等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的 . ( 5 )特殊化方法:把原问题的形式向特殊化形式转化,并
7、证明特殊化后的问题,使结论适合原问题 .( 6 )构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题 .( 7 )坐标法:以坐标系为工具,用计算方法解决几何问题也是转化方法的一个重要途径转化与化归的指导思想( 1 )把什么问题进行转化,即化归对象 .( 2 )化归到何处去,即化归目标 .( 3 )如何进行化归,即化归方法 .化归与转化思想是一切数学思想方法的核心 .二、中学数学解题中的的基本方法1. 观察与实验(
8、160;1 )观察法:有目的有计划的通过视觉直观的发现数学对象的规律、性质和解决问题的途径。( 2 )实验法:实验法是有目的的、模拟的创设一些有利于观察的数学对象,通过观察研究将复杂的问题直观化、简单化。它具有直观性强,特征清晰,同时可以试探解法、检验结论的重要优势。2. 比较与分类( 1 )比较法是确定事物共同点和不同点的思维方法。在数学上两类数学对象必须有一定的关系才好比较。我们常比较两类数学对象的相同点、相异点或者是同异综合比较。( 2 )分类的方法分类是在比较的基础上,依据数学对象的性质的异同,把相同性质的
9、对象归入一类,不同性质的对象归为不同类的思维方法。如上图中一次函数的 k 在不等于零的情况下的分类是大于零和小于零体现了不重不漏的原则。3 特殊与一般( 1 )特殊化的方法特殊化的方法是从给定的区域内缩小范围,甚至缩小到一个特殊的值、特殊的点、特殊的图形等情况,再去考虑问题的解答和合理性。( 2 )一般化的方法4. 联想与猜想( 1 )类比联想类比就是根据两个对象或两类事物间存在着的相同或不同属性,联想到另一事物也可能具有某种属性的思维方法。通过类比联想可以发现新的知识;通过类比联想可以寻求到数
10、学解题的方法和途径:( 2 )归纳猜想牛顿说过:没有大胆的猜想就没有伟大的发明。猜想可以发现真理,发现论断;猜想可以预见证明的方法和思路。初中数学主要是对命题的条件观察得出对结论的猜想,或对条件和结论的观察提出解决问题的方案与方法的猜想。归纳是对同类事物中的所蕴含的同类性或相似性而得出的一般性结论的思维过程。归纳有完全归纳和不完全归纳。完全归纳得出的猜想是正确的,不完全归纳得出的猜想有可能正确也有可能错误,因此作为结论是需要证明的。关键是猜之有理、猜之有据。5. 换元与配方( 1 )换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,
11、从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。 你可以先观察算式,你可以发现这种要换元法的算式中总是有相同的式子,然后
12、把他们用一个字母代替,算出答案,然后答案中如果有这个字母,就把式子带进去,计算就出来啦。( 2 )配方法配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解。配方法使用的最基本的配方依据是二项完全平方公式 (a b)2 a22abb2 ,将这个公式灵活运用,可得到各种基本配方形式6. 构造法与待定系数法( 1 )构造法所谓构造性的方法就是数学中的概念和方法按固定的方式经有限个步骤能够定义的概念和能够实现的方法。常见的有构造函数,构造图形,构造恒等式。平面几何里面的添辅助线法就是常见的构造法。构造法解题有:直接构造、变更条件构造和变更结论构造等途径。( 2 )待定系数法:将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。然后根据恒等式的性质得出系数应满足的方程或方程组,其后通过解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年事业单位工勤技能-广东-广东工程测量工三级(高级工)历年参考题库典型考点含答案解析
- 2020-2025年二级造价工程师之土建建设工程计量与计价实务高分通关题型题库附解析答案
- 2020-2025年高级经济师之工商管理高分通关题库A4可打印版
- 2025年中级卫生职称-主治医师-精神病学(中级)代码:340历年参考题库典型考点含答案解析
- 2025年驾驶证考试-货车理论考试-货车驾驶证(科目一)历年参考题库含答案解析
- 2025年通信专业技术-通信专业技术(中级)-中级通信专业技术(交换技术实务)历年参考题库含答案解析(5套)
- 2025年职业技能鉴定-铁路职业技能鉴定-铁路职业技能鉴定(铁路接触网工)技师历年参考题库含答案解析(5套)
- 2025年职业技能鉴定-热工职业-热工自动装置检修职业技能鉴定(中级)历年参考题库含答案解析(5套)
- 2025年职业技能鉴定-供水供应工-供水供应工证(中级)历年参考题库含答案解析(5套)
- 2025年综合评标专家-海南-海南综合评标专家(工程勘察、工程设计类)历年参考题库含答案解析(5套)
- 全业务竞争挑战浙江公司社会渠道管理经验汇报
- 护理副高职称答辩5分钟简述范文
- 幼小衔接资料合集汇总
- GB/T 42195-2022老年人能力评估规范
- GB/T 4909.4-2009裸电线试验方法第4部分:扭转试验
- GB/T 15155-1994滤波器用压电陶瓷材料通用技术条件
- 复变函数与积分变换全套课件
- 做一名优秀教师课件
- 企业标准编写模板
- 商场开荒保洁计划书
- DBJ 53-T-46-2012 云南省城镇道路及夜景照明工程施工验收规程
评论
0/150
提交评论