chapter 2-2.pdf

《半导体物理》英文课件

收藏

压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:205737597    类型:共享资源    大小:4.70MB    格式:ZIP    上传时间:2022-03-22 上传人:考**** IP属地:山西
30
积分
关 键 词:
半导体物理 半导体 物理 英文 课件
资源描述:
《半导体物理》英文课件,半导体物理,半导体,物理,英文,课件
内容简介:
1 2.3 Application of Schrodingers wave equation Electron in free space Electron in the infinite potential wall Electron in the potential barrier 2 2.3.1 Electron in free space Electron in free space = no force acting on the electron V(x) is constant We must have E V(x) to assure the motion of electron Time-independent Schrodinger wave equation 0)()(2)(222xxVEmxxFor simplicity, let V(x) = 0 0)(2)(222xmExx(Free space) )exp()()(jkxBjkxexpAxWhere 22mEk 3 tj-tEj-eet)/()()(exp)()(),(tkxj-Bt-kxjexpAextxtj- This wave function solution is a traveling wave, which means that a particle moving in free space is represented by a traveling wave. The first term, with the coefficient A, is a wave traveling in the x direction, while the second term, with the coefficient B, is a wave traveling in the -x direction. The value of these coefficients will be determined from boundary conditions. 4 )(),(t-kxjexpAtxWhere k is the wave number given by or Assume, for a moment, that we have a particle traveling in the x direction, which will be described by the x traveling wave. The coefficient B = 0. We can write the traveling wave solution in the form p2phAlso recall that the de Broglies wavelength was given by kpk2 A free particle with a well-defined energy will also have a well-defined wavelength and momentum. *2),(),(),(AAtxtxtxA free particle with a well-defined momentum can be found anywhere with equal probability. xpa constant independent of position 6 2.3.2 Infinite potential well (bound electrons) V ( x) for x 0, x a 0)()(2)(222xxVEmxxRegion I & III (V (x) ) (x) = 0 Region II (V (x) 0 ) 0)(2)(222xmExxA particle cannot penetrate these infinite potential barriers, so the probability of finding the particle in regions I and III is zero. E is finite. Where 22mEk 7 boundary condition: (x) is continuous at boundaries. ( n =1,2,3,.) the normalization boundary condition Finally, the time-independent wave solution is given by This wave solution is a standing wave solution, which means that the bound electrons (electrons in an infinite potential well) is represented by a standing wave. 8 22mEk The total energy of the particle can only have discrete values. The energy of the electron is quantized, contrary to results from classical physics which would allow the electron to have continuous energy values. Quantization of energy levels 9 Electrons in an infinite potential well energy levels wave functions probability functions 10 Example 2.3 energy levels of bound electrons Calculate the first three energy levels of a bound electron. Infinite potential well with width of 5 11 2.3.3 The step potential function 0)()(2)(222xxVEmxxRegion I (V (x) 0 ) 0)(2)(222xmExx22mEk1Where The first term - a wave traveling in the x direction that represents the incident wave The second term - a wave traveling in the -x direction that represents a reflected wave. As in the case of a free particle, the incident and reflected particles are represented by traveling waves. See text for more detailed analysis. 2.3.4 The potential barrier and tunneling The potential barrier function Tunneling effect Pauli exclusion principle In any given system (an atom, molecule, or crystal), no two electrons may occupy the same quantum state. In an atom, no two electrons may have the same set of quantum numbers The electron has an intrinsic angular momentum, or spin, which is quantized and may take on one of two possible values. s =1/2 or s= -1/2 . Electron spin 2.4 Extensions of the wave theory to atoms Before the nature of atomic electron states was clarified by the application of quantum mechanics, spectroscopists saw evidence of distinctive series in the spectra of atoms and assigned letters to the characteristic spectra. In terms of the quantum number designations of electron states, the notation is as follows: Spectroscopic Notation The quantum numbers associated with the atomic electrons along with the Pauli exclusion principle provide insight into the building up of atomic structures and the periodic properties observed. The order of filling of electron energy states is dictated by energy, with the lowest available state consistent with the Pauli principle being the next to be filled. Periodic table of elements 16 For helium, two electrons may exist in the lowest energy state. For this case, l = m =0, so now both electron spin states are occupied and the lowest energy shell is full. The chemical activity of an element is determined primarily by the valence, or outermost, electrons. Since the valence energy shell of helium is full, helium does not react with oth
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:《半导体物理》英文课件
链接地址:https://www.renrendoc.com/paper/205737597.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!