蛇形带式输送机的结构设计分析说明书.doc

蛇形带式输送机的结构设计分析含开题及3张CAD图

收藏

压缩包内文档预览:(预览前20页/共81页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:206617855    类型:共享资源    大小:2.28MB    格式:ZIP    上传时间:2022-04-01 上传人:QQ14****9609 IP属地:陕西
50
积分
关 键 词:
蛇形 输送 结构设计 分析 开题 CAD
资源描述:

资源目录里展示的全都有,下载后全都有,请放心下载。 有疑问或需要其他设计加微信好友(Q及微信同号)直接添加朋友:1459919609或设计师Q:1969043202咨询!

内容简介:
摘要带式输送机是当代最为得力的输送设备之一,在整个输送机范畴中,它是应用最为广泛的一个“家族”。 由于目前对于蛇形输送机的结构设计还没有成系统的完善的设计方法,并且国内目前所拥有的的输送机产品还存在不少的缺点,还没有一个十分令人满意的结构,因此,本人借鉴国内外的一些先进机型,设计本蛇形输送机。本文进行了蛇形带式输送机的结构的设计、输送机的工作原理设计并对重要参数进行计算校核。在结构设计中,进行了支架连接纵梁、中间支架、机身行走驱动、运输驱动等的结构设计。关键词:蛇形带式输送机;结构设计;参数计算AbstractContemporary belt conveyor is the most effective delivery of the equipment. In the entire conveyor areas, it is the most widely used of a family. As for the snake-like conveyor success even before the structural design of the sound system design, and the current domestic owned by the conveyor products there are still many shortcomings, there is not a very satisfactory structure, therefore, I Draw at home and abroad, some of the advanced models, the design of the snake-like conveyor.In this paper, a snake-like structure of the belt conveyor design, conveyor and the important principle of design parameters for calculating check. In structural design, a stent connecting Longitudinal Beam, the middle frame, and the fuselage walk-driven, such as transport drive the structural design.Key words: snake-like belt conveyors; structural design; parameters目录前言11 绪论21.1 课题的研究意义21.2 课题的研究现状22 蛇形带式输送机的结构设计32.1 总体的结构设计32.2 输送机对输送带的要求和结构32.1.1 输送带的设计要求和结构32.1.2 输送带的参数设计42.3 机身行走驱动的结构设计52.3.1 机身前端小车轮52.3.2 机身内部结构的设计62.3.3 总体结构图82.4 中间支架的结构设计92.4.1 中间支架的结构原理92.4.2 零件组成112.4.3 托辊的结构设计和计算142.5 支架连接纵梁的设计192.5.1 纵梁套和纵梁的设计192.5.1 纵梁套和纵梁的弯曲计算202.6 运输驱动的设计202.6.1 运输驱动的结构设计223 输送机的工作原理223.1 水平蛇形弯曲原理223.2 边坡时所有中间架立柱与机头机尾立柱平行233.3 皮带强制纠偏和皮带限位原理243.4 电路控制原理254. 主要参数的设计和计算264.1 初步设计的条件和主要参数264.2 主要参数计算和验算264.2.1 带宽的验算264.2.2 单位长度均布载荷计算274.2.3 单位长度阻力计算284.2.4 驱动滚筒奔离点张力概算284.2.5 计算承载分支最小张力点的张力284.2.6 计算曲率半径与曲线段几何尺寸304.2.7 曲线段尺寸计算和胶带强度的验算314.2.8 计算电动机的功率324.2.9 驱动带轮的设计334.2.10 后端驱动托辊轴的设计354.2.11 前端托辊轴的设计384.2.12 验算驱动滚筒的防滑安全系数395 技术经济分析406 结论41致谢42参考文献43附录A44附录B53前言带式输送机是当代最为得力的输送设备之一,在整个输送机范畴中,它是应用最为广泛的一个“家族”。作正在向大运量、为整机,大运距、大倾角和广泛的适应性能方向发展,作为零部件,也正在向高性能、高寿命、低能耗方向发展。因此,在国内外有愈来愈多的人从事于带式输送机各个方面的研究,这是适应生产发展的必然现象。本论文主要研究的是蛇形输送机的结构设计。由于目前对于蛇形输送机的结构设计还没有成系统的完善的设计方法,并且国内目前所拥有的的输送机产品还存在不少的缺点,还没有一个十分令人满意的结构,因此,本人只能借鉴国内外的一些先进机型,凭借自己在大学里的所学,运用比较先进的CAXA和PRO/E软件对带式输送机的功能原理和结构总体设计进行了分析,并在老师的指导下设计的更加有合理性和经济性。由于本人所学的知识有限,难免在设计上对输送机的结构和参数的把握不尽合理,但是仍希望阅读者对蛇形输送机的结构设计提供个方面的建议。1.绪论1.1 课题的研究意义带式输送机具有长运距,大运量,连续输送等优点,且运行可靠,易于实现自动化集中控制。我国大多数的煤矿带式输送机长运距、高带速、大运量、大功率的方向发展,经过科研攻关和引进消化吸收国外先进技术,基本满足了发展的要求,但与国外先进技术还存在不少差距,特别是在带式输送机的结构设计方面,很多结构的设计不够理想,大大影响了输送机的工作效率,譬如输送机的张紧结构影响着输送机的正常运行。因此,这个课题的研究是为了更深入学习带式输送机的结构设计和原理。 1.2 课题的研究现状目前,国产煤矿带式输送机从SDJ、SSJ、STJ、DT等系列定型发展到各种多功能特种带式输送机系列,如大倾角带式输送机成套设备、高产高效工作面顺槽可伸缩带式输送机,大倾角、长运距带式输送机系列产品等,并用动态分析,智能化控制技术等对关键设备进行了理论研究和产品开发,对带式输送机的结构设计的发展起到很大的作用,出项了多种的新型结构的带式输送机。其中具有代表性的主要有:大倾角带式输送机(深槽带式输送机、花纹带式输送机、波纹挡边以及压带式输送机等)、管状带式输送机、气垫带式输送机、平面转弯带式输送机、线摩擦带式输送机等。这次设计的蛇形输送机必须要求可以弯转运行,这首先是根据输送物品的露天和地下开采的需要提出来的。弯曲输送机可代替沿折线布置的、由多台单独的直线输送机串联而成的运输系统,沿复杂的空间折曲线实现物料的连续输送。带式输送机在平面上转弯运行,可以大大简化工艺运输系统,减少转载站的数目,降低基建工程量和投资。在国外,可弯曲的蛇形输送机已在露天矿、地下煤矿的弯曲巷道、水电站建设工程以及其他生产系统推广应用。在国内,亦先后开始使用了很多这种的输送机,并取得了良好的技术经济效果。在理论研究方面,国外作了大量工作,使普通胶带输送机转弯运行这一技术措施建立在更加严密的理论基础上,达到了按设计进行安装并保证稳定运行的程度。2. 蛇形带式输送机的结构设计2.1 总体的结构设计蛇形输送机主要的结构设计在于能实现弯曲运行的功能。其总体的结构里面包括:皮带、中间支架、支架连接纵梁、机身行走驱动装置、皮带运输驱动装置、皮带强制弯曲强制纠偏装置、控制装置等。总体的结构俯视设计图如下:图2-1总体结构图Figure 2-1 overall structure of the2.2 输送机对输送带的要求和结构设计2.2.1 输送带的设计要求和结构设计输送带有很多种,这次的设计结构主要采用工字形的输送带,在工作的时候可以保证皮带不出现飘动或者别的不稳定的情况;皮带被两个轴承扣住,而且轴承是可以经过拉簧进行调解之间的距离的;皮带在返回的时候原理也是一样的。,这是根据输送机的的结构设计来选择的。这样设计可以使皮带承载进行强制纠偏并进行随行的实现作用。皮带截面的形状如下图图2-2 皮带Figure 2-2 belt设计要求如下:(1)要有足够的拉伸强度和弹性模量,以达到在所要求的距离内输送材料所需要的传输功率以及在负荷状态下允许最低转载所产生的运转伸长率。(2)要有良好的负荷支撑及足够的宽度,以满足运输物料时所需要的类型和体积。(3)要有柔性,目的在于在长度方向上能围绕滚筒弯曲,如果需要的话,希望在横向形成槽形。(4)要有尺寸稳定性,使输送带运转时平稳。(5)承载面的覆盖胶要经受得起承载物体的负荷冲击,并且能帮助恢复弹性,传动时,覆盖胶能与滚筒有足够的摩擦力。(6)各组分之间有良好的粘合力,避免脱层。(7)耐撕裂性能好,耐损伤,能联结成环形。2.2.2 输送带的参数设计本次设计的输送带是运用橡胶输送带,计算输送带时主要是计算长度和平方米。(1) 带宽的计算: 1.1()=0.12m 查设计资料可知,B最少取0.8m,因为0.120.8m, 因此取B=0.8m适用。(2)输送带的长度计算:因为初步设计输送机的全长路线S=L=15m,,A=0.2m, ,;输送机的输送带全长计算如下: (2-1)式中-输送带全长,m; -输送机头尾滚筒中心间展开长度,m; 、-输送机头部滚筒直径和尾部滚筒直径,m; -输送带接头长度,m; -输送带接头数; -采用垂直拉紧装置,卸料车灯所增加的输送带长度,m;算出:,由于存在误差,故先取。2.3机身行走驱动的结构设计 机身行走驱动是蛇形输送机的一个很重要的部分,能保证输送机正常的行走,从而更好的提高输送机的工作效率,设计在输送机的前端车身上。整个机身行走机构包括机身前端车轮、机身内部结构等等。2.3.1机身前端小车轮前端小车轮主要作用是把车轮固定在前端小车的机身上,而且还要保证车轮能左右转动,再用连杆和装向器控制车轮的装向,并且两个小轮的转向时一致的,保证输送机的正常行走。前端车轮固定架前端车轮固定架是连接车轮和车身的中间枢纽部件。这个零件是根据车轮的的选取和与装向连杆如何连接而设计的,部件上头不仅能连接车身,还能与转向连杆相连,使两个车轮在同时工作的,转向时一致的。图2-3 车轮固定架Figure 2-3 wheels fixator、前端车轮 车轮的选取是根据输送机的车身大小与整体的重载而选取,有时还要考虑工作的环境情况。只要不影响输送机正常运行并能有足够的工作寿命就能满足条件。图2-4 小车轮Figure 2-4 on the wheels2.3.2 机身内部结构的设计、带式输送机的机身驱动结构包括前驱动轮轴、前驱动车轮、链轮、发动机等等,工作时是由安装在前端小车上的电动机带动,电动机通过链传动带动前端小车的后轮进行前进,然而带动整个输送机进行行走。下面对两个重要部件的结构分析:前驱动轮轴和 前驱动轮轴的设计是根据输送机的驱动系统设计的,轴的一边有一个键槽,是为了固定链轮的,发动机通过链传动从而带动前驱动轴转动,其效果图如下:图2-5前驱动轮轴Figure 2-5 before the drive axle轴的直径和长度是根据受力分析而设计的,其受力图如下:图2-6轮轴受力图Figure 2-6 axle diagram1为键槽,轴段1跟轴段3对称和为轴承对轴的支撑力,和为车轮对轴的支撑力,T为链轮对轴的拉力。因为受力包括车身的重量和输送物料等等很多部件,故对受力的大小的分析要求不高,故对轴的设计,只要能满足驱动作用,并保证一定的工作寿命就可以了。设计中取:D=35mm;。前驱动车轮:跟前端车轮的要求一样,但是区别是驱动车轮是固定在驱动轴上的,不能发生转向。图2-7 车轮Figure 2-7 wheels2.3.3 总体结构如下图:(齿轮和前端小车轮没画出)图2-8 总体结构图Figure 2-8 overall structure of the1:链轮1、 2:链轮2、 3:链轮3、 4:齿轮、 5:前车电动机、6:前车滚筒、 7:前车驱动轮机身的行走原理是由电动机带动齿轮1,齿轮1带动齿轮2,再带动齿轮3,最后减速带动齿轮4,从而带动前车驱动轮,使车身进行行走,滚筒6是随动滚筒,并不是驱动滚筒。2.4 中间支架的结构设计中间支架式输送机的最重要的一部分,也是设计中的重中之重。下面对各个结构进行分析和设计。2.4.1. 中间支架的结构原理中间支架只要由4个上托辊、下托辊、支架、工字形限位纠偏装置组成,皮带承载在上托辊输送运行,下托辊是为了回转皮带的,限位纠偏装置是根据皮带的结构和输送机的设计进行设计,强制皮带弯曲并纠偏以确保皮带随动的实现。下面对中间支架的各个部件进行分析和解剖:整体的结构如下:(中间支架下梁没画出)图2-9 中间架组装图Figure 2-9 middle-assembly plans 图2-10 联接板结构图Figure 2-10 connection structure of the board1:上托辊 2:下托辊 3:拉簧 4:小轴 5:轴承中间架之间是由联轴板相连接的,联接板两边各有两个20方管相接,中间靠螺纹圆柱销链接,并且有可以扭转的功能,使输送机的工作的时候,纵梁能顺利伸缩弯曲,以达到设计的要求。2.4.2 零件组成中间支架低梁的主要功能是下面链接着小车轮,上面支撑着整个中间支架。、中间支架下梁中间支架下梁位于中间支架的底端,分别与两边的方管连接,是中间支架起支撑和连接的重要部分。图2-11 中间支架下梁Figure 2-11 middle stent Beam、中间架立柱中间架立柱位于中间架两边,带沟凸出的那部分,是为了固定下托辊而设计的,立柱上端与上托辊架连接。图2-12 中间支架立柱Figure 2-12 stent middle column、中间架上梁中间架上梁位于中间架中间,上面支撑着上托辊,中间连接着纵梁座,为皮带限位装置固定位置,是中间支架结构的重要部位。图2-13 中间支架上梁Figure 2-13 middle stent Leung、纵梁座纵梁座固定在中间架立柱顶端两边,两边分别都链接着纵梁套,是每一节之间相互相交的关节,纵梁套跟纵梁座之间用大六角头螺栓链接。这种设计可以让输送机的纵梁在进行伸缩的时候更加方便。图2-14 纵梁座Figure 2-14 Longitudinal Beam Block、皮带限位装置座皮带限位装置的装配结构,中间分别是两根小轴和两头的轴承。主要是为了皮带限位,这是根据皮带的形状(工字型)设计,这种设计还可以在这里再装上多点驱动,提高工作效率。图2-15 皮带限位装置座Figure 2-15 seat belt spacing devices、上托辊夹和上托辊夹片上托辊夹是镶接在中间架立柱和中间架上梁上,固定上托辊,并能使托辊正常运动和工作。图2-16 上托辊夹片Figure 2-16 on the roller Clip2.4.3. 托辊的结构设计和计算随着带式输送机的发展,从托辊的结构到托辊组的型式不断有新的变化,面对如此众多的托辊和托辊组形式,因此更要合理的选择合适的托辊组型式。这次设计的要求主要是:使用可靠、回转阻力系数小、制造成本低、具有足够的承载能力。根据设计的情况,选择了槽型托辊组,结构图形如下:图2-17 托辊结构图Figure 2-17 structure of the roller下面是对各个部件用PRO/E的图进行解剖:图2-18 上托辊Figure 2-18 on the roller图2-19 上托辊轴Figure 2-19 on the roller-axis图2-20 中间托辊装配图Figure 2-20 middle roller assembly图2-21 中间托辊Figure 2-21 middle roller 托辊的载荷计算普通槽型的托辊,物料作用在各棍子上的载荷,都是将物料和输送带的载荷的70%作用在中间辊子上,侧辊各作用15%。CEMA所给出的托辊载荷计算方法考虑了托辊组安装的偏差。另一方面,缓冲托辊、直线段托辊组、过渡段和曲线段的托辊载荷需要采用各自的处理方法进行计算托辊的载荷,计算方法如下:单个辊子的载荷可表示为,承载托辊。 (2.2)回程托辊为 (2.3)式中-托辊间距,m;-物料系数,因为是四辊槽型托辊组,故;-输送带系数,同上,;初步设计:承载托辊 回程托辊 辊子轴的挠度计算一般的,辊子的强度是足够的,但是在载荷作用下,辊子轴会发生弯曲,这种并不损坏轴的弯曲对轴承的工作不利,所以,辊子轴在轴承处的转角应小于轴承允许的转角。计算轴挠曲时,可将轴作为一根在支点间作用两个对称集中载荷的简支梁。为了简单起见,假设轴上各处的直径相等,如下图所示,辊子的长度为,轴承中心到支点的距离为,可计算出辊子轴的最大挠度和在轴承处的转角 (2.4) (2.5)图2-22 辊子轴分析图Figure 2-22 roller axis analysis of式中E-轴的弹性模量,Mpa;-轴的惯性矩,。 的允许值一般为,有时可以取。或者用轴承转角的限制条件,这个条件可以从轴承的规格表中得到,根据轴承大小和轴承间隙,轴承转角的取值为。 辊子转速的限制由于加工精度和管体材料的不均匀。辊子存在着一个偏心,转速越大,辊子的振动也是越严重。特别是当托辊振动的频率与输送带的固有振动频率相等时,将产生共振,使输送机不能正常工作。当带速一定时,托辊直径越小,其转速就越高,振动就越强烈。为了避免过大的振动,德国克虏伯公司建议托辊的转速应小于600r/min,日本石川岛播磨公司根据托辊椭圆度不同推荐转速应小于740r/min和610r/min。因而,在满足允许托辊转速条件下,辊子的直径为式中d托辊直径,m;-托辊允许的转速,r/min;设计中d=40mm,v=1m/s,故有:,得,满足要求。2.5 支架连接纵梁的设计这个装置主要是为了固定纵梁和纵梁之间的连接,是辅助中间架的一部分装置。装置图:图2-23 纵梁装置图Figure 2-23 Longitudinal Beam setup2.5.1纵梁套和纵梁的结构设计两套筒之间由弹簧保持平衡,并且实现伸缩性能。从而使输送机能实现进行蛇形弯曲前进的功能。整体图:图2-24 纵梁装配图Figure 2-24 Longitudinal Beam assembly1:螺丝接口 2:纵梁套(里面装有压缩弹簧) 3:可滑动接口(让纵梁套和纵梁之间可以进行压缩或者伸张) 4:纵梁 5:滑动的通孔2.5.2纵梁套和纵梁的弯曲计算 纵梁套和纵梁的尺寸大小如下图所标:图2-25 纵梁尺寸图Figure 2-25 Longitudinal Beam size map蛇形输送机能弯曲的最大角度即:纵梁套与纵梁之间的伸缩而引起的最大角度。先讨论纵梁套与纵梁之间的最大伸缩的情况,把纵梁伸缩到最大值时,纵梁是近似为直线的,如下图分析:图2-26 计算弯曲角度图Figure 2-26 calculated bending angle mapL为两个纵梁中心线之间的距离,L1为纵梁套跟纵梁伸缩到最大值的距离,L5为纵梁套跟纵梁压缩到最小值的距离,为弯曲的最大的角度。因为近似于等腰三角形,故得:tg算出:,所以取:。 曲率半径后面已分析计算,这里就不做分析了。2.6 运输驱动的设计2.6.1运输驱动的结构设计 运输驱动主要是靠后端小车来实现,后端小车上的发动机带动后车滚筒,从而带动皮带进行运输,后车的结构图如下:图2-27 后车装配图Figure 2-27 after the car assembly3输送机的工作原理3.1 水平蛇形弯曲原理主要是采用纵梁伸缩原理,如结构图中的纵梁伸缩原理:两套筒之间由弹簧保持平衡,并且实现伸缩性能。中间架销轴联接零件分析:图3-1 链接垫片Figure 3-1 link pads图3-2 链接销Figure 3-2 link sales3.2变坡时所有中间架立柱与机头机尾立柱平行主要运用了平行四边形原理,让输送机工作时保持平行前进,以防物料漏掉。工作时在两边的纵梁套跟纵梁一边伸缩,另一边压缩的时候,输送机的所有中间架立柱都保持与机头机尾立柱平行,这样输送机不会发生倾斜的情况,物料能更好的输送。3.3 皮带强制纠偏和皮带限位原理(强制皮带弯曲并纠偏以确保随动的实现) 皮带强制纠偏和限位设计除了起到能达到设计的要求之外,还可以再进行多点驱动设计,因设计模型太小,没进行设计,但理论上可以实现。皮带的限位装置图:图3-3 皮带限位装置Figure 3-3 belt spacing devices图3-4 皮带限位装置Figure 3-4 belt spacing devices1:皮带 2:轴承 3:拉簧 4:小轴3.4 电路控制原理利用接触器实现低压控制,简单的电路图如下:图3-5 电路分析图Figure 3-5 circuit analysis of设计中的电路控制原理分两部分,当K1闭合时,220V的电源让图中上面的接触器充上电,进而闭合,使得图中上面的电动机在380V的回路中正常工作;当K2闭合时,同理,使得图中下面的接触器进行闭合连接,从而图中下面的电动机开始工作。4 主要参数的设计和计算4.1 初步设计的条件和主要参数(1)设计条件:输送量Q(t/h) 2. 线路长S(m) 15(2)主要参数的初步设计: 带速V(m/s) 1. 胶带规格、型式 硬度大的胶带 带宽B(mm) 800 抗拉强度(N/cm层) 560 托辊直径 D(m) 0.3 承载托辊G(kg/m) 6 回程托辊G(kg/m) 5 承载托辊间距(m) 1 回程分支托棍间距 (m) 2 总围包角() 300 发动机型式 BJO262.4;BJO272.4 功率(KW) 17;30 电压(V) 3804.2主要参数计算和验算4.2.1带宽的验算 1.1()=0.12m 查表可知,带宽一般最小值为0.8m,因为算出B=0.12m0.8m, 因此取B=0.8m适用。4.2.2单位长度均布载荷计算 式中-曲线段承载分支托辊转动部分重引起的均布载荷4.2.3单位长度阻力计算因为直线段和曲线段采取相同的阻力系数值 式中-承载分支直线段的单位阻力; -承载分支曲线段的单位阻力; -空载分支的单位阻力; -线路的坡度,。 计算承载分支曲线段阻力时忽略了坡度的影响。4.2.4驱动滚筒奔离点张力概算(1)概算总阻力 式中-附加阻力系数,取; -输送机线路总长,按线路折线总长计算,m。(2)概算驱动滚筒奔离点张力 式中-抗滑安全系数,取=1.4; -胶带与未衬胶驱动滚筒的粘着系数,取; -胶带在双驱动滚筒上总的围包角: 根据计算结果,将圆为整值,取。4.2.5计算承载分支最小张力点的张力(1)用逐点计算法,也就是设将总牵引力F分为n份,每份牵引力称为单位牵引力Sn, 任一驱动滚筒i所分配到的单位牵引力为其中的一份,进而去计算每一份,而且还要确定哪个滚筒的牵引力最小,进而就可以算出最小张力点的张力。可以从下面图所示:图4-1牵引力分析图Figure 4-1 traction analysis of图4-2 张力与曲线段几何尺寸计算示意图Figure 4-2 tension and geometry calculation of the curve diagram 可得到: (2)验算最小张力 符合要求 上式中,由于线路倾角很小,取。4.2.6计算曲率半径与曲线段几何尺寸(1)选取有关参数托辊组的抬升角;胶带沿托辊组的摩擦系数;侧托辊的倾角。(2)根据防止胶带跑偏要求确定允许的曲率半径 计算胶带在曲线段趋入点处张力 (4.1) 将(4.1)式代入公式中, 得到: 将曲率半径圆整,取。(3)根据胶带外边缘的允许应力确定曲率半径 选用的织物芯胶带的破断拉力为: 式中:-胶带芯层的抗拉强度,层; -胶带的有效工作宽度,; -胶带的芯层数, 。 胶带允许的最大拉伸应力按下式计算: 式中-安全系数,取; -胶带受拉伸作用的横截面积,即 查资料取胶带的弹性模量为。 胶带在曲线段趋入点处的张力为: 胶带在曲线段奔离点处的张力为: 将以上求得的、和各值代入下面公式可得: (4)根据胶带外边缘总伸长量不超过允许值的要求确定曲率半径 输送机满载时弯曲段端部胶带工作张力对所选用交代允许张力的比例系数为: 式中 -胶带的允许张力 取胶带允许的伸长。 根据已知的和值,由设计手册上可查得,因此得到: 根据设计的要求,取曲率半径的最大计算值。4.2.7、曲线段尺寸计算和胶带强度的验算(1)曲线段的尺寸计算 参考下面的图进行计算:图4-3 张力与曲线段几何尺寸计算示意图Figure 4-3 tension and geometry calculation of the curve diagram 切线长: 弧线长: 内移距: 因为内移距甚小,并且在基础资料中没有规定内移距的最小允许值,故所取曲率半径和转角是可行的。(2)验算胶带的强度 故安全。4.2.8计算电动机的功率 按下式计算电动机传给驱动滚筒的牵引力 式中-头部卸载滚筒奔离点的张力 可以这么求得: 头部卸载滚筒趋入点的张力: 故: 所以 电动机功率为: 式中-电动机功率备用系数,取; -减速器效率,取; -液力联轴器效率,取。根据计算结果,配用功率为1KW的电动机就足够了。4.2.9、驱动带轮的设计 已知数据: 传动功率:30kw 带速:小带轮=750rpm,大带轮=350rpm 载荷性质:载荷变动小,取K=.2 计算PP= KP=1.230=36kw (4.2) 选带型选取基准宽度窄V带 传动比i (4.3)为滑动系数,取=0.01大带轮节圆直径,可视为基准直径d小带轮节圆直径, 可视为基准直径d 小带轮基准直径dd=250mm 大带轮基准直径dd=495mm (4.4) 驱动带轮的带速 (4.5)初定中心距0.7(d+ d)a2(d+ d) (4.6)算得:521mm a1490mm取a=600mm 基准长度 (4.7)=2394.6 mm查表取L=2400mm0 实际中心距 (4.8)1 小带轮包角 (4.9)满足设计条件2 单根V带额定功率查表,选SPB,P=5.23kw3 V带根数 (4.10)取Z=8为包角修正系数,查表得=0.91为带长修正系数, 查表得=0.94 张紧力 =413.1N (4.11) 5 作用在轴上的力 (4.12)4.2.10、后端驱动托辊轴的设计、轴的结构设计图4-4 轴的结构剖面图Figure 4-4 axis of the structure profiles1:链轮 、2:圆柱滚子轴承、3:轴承、4:A型孔用弹性挡圈、5:滚筒轴段23分别与65对称,在轴段3和5中分别还有一个键槽,是为了固定滚筒的,因为要求不高,其尺寸大小在零件图中标出,在这里就不做分析了;轴段1和7,与轴承配合,而且轴1还与驱动的链轮链接,根据轴的设计和轴承的选取,则取:,;选取圆柱滚子轴承N型50,代号为:N210E轴段2和6,根据轴的设计原理,取:,;轴承3和5,分别与滚筒配合,根据滚筒的大小和扭转条件确定:,;轴承4是为了固定和地位滚筒而设计的,按轴的设计原理确定:,。、轴的受力分析根据轴的结构图作出轴的简单计算简图:轴的受力图:(受力近似水平)图4-5 轴的受力分析图Figure 4-5 axis Analysis plans轴的扭矩图:图4-6 轴的扭矩图Figure 4-6 axis of torque map、:皮带对滚筒的拉力,作用在滚筒上,中心点在滚筒中心; :链轮对轴的拉力; 、:轴承对轴的支撑力; 、:轴上的转矩。 N N 先以为支点,可得方程:;再以为支点,同理可得:;由上可算出:=17N; =16.69N。4.2.11、前端托辊轴的设计、轴的结构设计前端托辊装配图图4-7 前端托辊轴装配图Figure 4-7 front roller shaft assembly图4-8 前端托辊轴剖面图Figure 4-8 front section of the roller-axis1:圆柱滚子轴承、2:轴承、3:A型孔用弹性挡圈、4:滚筒轴段123分别与765对称,除了轴1,其它的跟后端托辊轴一样;轴段1和7,与轴承配合,根据轴的设计和轴承的选取,则取:,;选取圆柱滚子轴承N型50,代号为:N210E轴段2和6,根据轴的设计原理,取:,;轴承3和5,分别与滚筒配合,根据滚筒的大小和扭转条件确定:,;轴承4是为了固定和地位滚筒而设计的,按轴的设计原理确定:,。、轴的受力分析 前端托辊轴的受力情况除了没有受到链轮的拉力之外,其他的跟后端托辊轴一样,但和大小一样,即: N。4.2.12、验算驱动滚筒的防滑安全系数 满足条件要求。5 技术经济分析随着国民经济的迅速发展,输送机在诸多煤矿工程或者建设行业中将被广泛地采用,而作为主要机种的带式输送机以它独特的特点在输送机行列中起着越来越重要作用。随着我国基础设施建设的深入,带式输送机在输送机市场有着广阔的发展空间,因此发展满足我国国情所需要的输送机是十分必要的。我国是煤矿大国,输送机的发展大多数都是跟着煤矿业发展起来的。除此输送机还有很多的应用。带式输送机是火力发电厂运输煤炭和灰渣的主要设备,当通过铁路运输供煤时,装设4-6台机组的电厂,一般需用带式输送机的长度大致为:卸煤装置:80m(翻车机)-180m(缝隙煤斗):运输到燃煤系统:350-450m;煤场堆取:300-400m;煤斗间输送及配舱:300-500m;总计输送路线为1200-1500m。建设场地受到限制的电厂,运输路径迂回曲折,转运点亦增多,运距将相应增加。故要求带式输送机都能弯曲运输。带式输送机是先进的金属矿山的半连续开采工艺和煤矿的连续开采工艺中的重要装备。露天的煤矿开采系统由斗轮挖掘机、带式输送机系统和排土机为主体,运煤系统和排土系统均由斗轮挖掘机供料,岩土系统终端由排土机排土。为适应工作需要该系统的带式输送机分别采用不同类型的带式输送机,例如:固定带式输送机、半固定带式输送机、可逆式带式输送机、单轨移置带式输送机、双轨移置带式输送机等等。带式输送机在港口散状物料运输中也起着重要的作用。但随着发展,对输送机的要求越来越高,功能越来越多。此次我主要是针对带式输送机的功能原理和总体结构的进行设计,在明确了解带式输送机在工作环境中的要求和需求的功能之后,我在原来的输送机的基础上,运用学到的知识对带式输送机进行了更好的设计,使它能进行弯曲行动而且能弯曲运输物料,还能采用多点驱动,既要符合工作条件,又要达到经济性合理,所以在设计过程中要充分考虑经济性。蛇形输送机的结构设计和驱动系统是带式输送机中重要的组成部分。我运用所学的知识,用CAXA和PRO/E比较先进的软件对输送机进行了结构分析和设计,并进行了一定的参数计算,尽量让设计的输送机更加技术性和经济性。所以通过以上的分析,我们不难看出,带式输送机,尤其是研究它的多功能原理和合理的结构设计两大部分,在我国将会有更加广阔的发展前景,希望有更多的有识之士来从事这项研究,为国家的发展尽自己的绵薄之力。6结论我国是煤炭生产大国,提高原煤的质量,运输煤的效率具有非常可观的经济和社会效益。输送机的主要任务即是以消耗最少的能源,以最有效的方法把煤从煤矿运输出来。并能达到一定的效益和产值。本设计依据与一些普通的输送机相关的一些设计参数,经过理论优选出合适的结构,最终确定蛇形输送机的结构设计,并且用时下很流行的pro/e软件和CAXA软件将其结构表达了出来。本设计的结构规模比较小,有些理论行的通的设计没表现和设计出来,有待进一步研究和优化设计。由于本人的能力有限,对pro/e的使用还存在一定缺陷,大部分都是在老师的指导下进行设计的,并且只对一些复杂结构设计和受力分析等的工作只能做简化处理,这些都使得本次设计存在一定的误差。在本次设计中,本人加深对了机械设计的了解,学到了很多新的知识,并明白了技术创新的重要意义,对将来用好所学知识打下了一个很好的基础。致谢本文是在导师XX老师的悉心指导下完成的,从论文的选题、研究思路确定、论文撰写直至论文修改的每个环节上,老师都倾注了大量的心血和精力。贾老师在生活上平易近人,对学生关怀备至;在学习上对学生高标准严要求,尤其注重对学生工作方法和能力的培养,使本人受益匪浅, 各方面能力得到了较大的锻炼和提高。在此谨向他致以衷心的感谢和崇高的敬意! 其次我要感谢与我在同一个导师的同学,他们的我的毕业设计过程中给了我很大的帮助和支持,我们之间互相帮助、互相学习,彼此各取所长,共同一起完成我们的毕业设计。最后感谢在辽宁工程技术大学学习和生活中给予我关心、指导的所有老师和同学们。由于水平和时间有限,论文中难免有不当和不足之处,诚挚的恳请各位专家、教授予评审和给予指正。最后衷心感谢各位老师在百忙之中评阅本文。参考文献1 段鹏文、毛君主编.工程机械M 第二版 北京:中国华侨出版社,2002.102 运输机械设计选用手册编辑委员会编 运输机械选用手册:上册 北京:化学工业出版社,1999.13 运输机械设计选用手册编辑委员会编 运输机械选用手册:下册 北京:化学工业出版社,1999.14 巩云鹏 田万禄 张祖立 黄秋波 主编.机械设计课程设计M 沈阳:东北大学出版社,2000.75 宋伟刚 主编.通用带式输送机设计 北京:机械工业出版社,2006.56 成大先 机械设计图册 北京:化学工业出版社 2000.7 杨复兴 胶带输送机结构原理与计算:上册 北京:煤炭工业出版社 1990.8 杨复兴 胶带输送机结构原理与计算:下册 北京:煤炭工业出版社 1990.9 孙可 带式输送机的传动理论与设计计算 北京:煤炭工业出版社 1991.10中国矿院学院主编 矿山运输机械 北京:煤炭工业出版社附录A捕捉效率链传动的噪音模型及预测H. ZHENG, Y. Y. WANG, G. R. LIU和K. Y. LAM高仿真计算机学会 科学公园I 新加坡118261K. P. QUEK, T. ITO和Y. NOGUCHI文 摘由于链滚筒与链的扣链齿传动为反作用,本文为捕捉噪音实现的方式。关联滚筒和它感应压力的动态回应的发展基于声音主要地是由振动的链滚筒所产生的这一事实。有限元技术分析软件所做的模型在改变操作情况和不同的扣链齿结构下每个连滚筒的加速回应的链传动所必须的噪音的水平预测。预测所捕捉的听觉压力水平与可得的实验测量相比较。一般而言,设计者在预测在与实验的参照可以得到关于挑选链传动的噪音水平的合理数据。说 明链传动从工作母机、舰队和航空宇宙传动到摩托车和时间安排系统等几乎所有的机械工业中被广泛的应用。但噪音和链传动的振动已经是这种力量传输系统在设计中人们所关心的。这一种情形应该被归因于这一事实:链传动具有传动的不连续性和扣链齿的特点。研究员在制造动态的不受欢迎噪音和振动链传动系统分析等方面已经做出了巨大的贡献。在链传动的振动和噪音系统分析,噪音来源的确认主要被归类为五个种类:装载分配分析、运动学的分析、电动和振动分析、噪音和振动控制。调查表示,在有负荷分析、运动学分析、动力学和振动分析等主题已经有大量的研究,分析和研究链传动的预测已经被限制的相当小。在滚筒链传动的主要噪音来源已经被Uehara 和 Nakajima用实验获得。发现噪音最重要的来源在捕捉程序期间来自链连接和扣链齿之间的冲击。这所谓的“捕捉噪音”可以细致的描述出链的全部动态行为和各种不同的参数。其他人用石头做了进一步的实验,其结果也表示噪音水平和冲击在期间有相互的关系。Liu 以及其他人做了一个链电动模型和一个链传动系统电动模型的分析,该模型呈现了链/扣链齿冲击动力学的一项各种各样的分析。通过实验调查,他们举例说明了捕捉动态负荷和近场声音压力的链/扣链齿之间的直接的关系。作者认为,Uehara和Nakajima所给出的用来判断链传动噪音经验公式是最健全的,最好的。在他们推导出公式以前,能用来计算来自滚筒链传动的噪音射线和听觉能源计算所需要的一些常数(C5和C6在参考条件中一定相等)一定要在相似的链传动上用实验的方法来获得。边界元素法(BEM)已经是人们计算听觉放射线问题有效数字的老技术,老方法了。边界元素法的主要优点是减少了结构离散化和起因问题数据准备的时间。但是,边界元素法具有反常期限的评估和解决非独特操作的缺点。此外,由于存在的行业软件密码之间对于数据接口的限制,对于有限元法(FEM)和使用边界元素法对听觉放射线分析的结构分析,在模型中直接地利用组合的有限元法/边界元素法方面对于模拟捕捉来自很多不连续的元素组成有很大的困难,如链传动的一个复杂的机械噪音。本文就是对滚筒链传动噪音水平测试的方法做详细的描述。这种方法把预测链传动噪音的工作分为两个步骤。首先,依据声音是由振动的滚筒产生的这一事实做出关联滚筒的动态回应和感应健全压力的模型,对于滚筒链传动的噪音水平预测的数字程序会根据一个声音模型而被建立。其次,有限元做模型和模拟技术被应用于分析链滚筒和扣链齿的冲击反映。冲击加速度的模拟结果在观察任意点对于压力的计算的软件中被认作输入的数据。它的优点在于能使一个设计者有效率的获得关于链传动噪音水平的必需资料。此外,有一些商用计算机辅助工程软件(CAE)可以作为滚筒链传动的工具,因此,在链传动系统的设计中,计算来自滚筒链传动噪音水平数字的程序进入现有的计算机辅助工程软件的运行环境,被整合并产生一个完全能够模拟的虚拟听觉。捕捉机械噪音的说明在它们啮合时,由扣链齿和链滚筒之间的交互作用所引起的声音被认为是第一类并且是链传动中最重要的噪音来源。那些机械由于多边形效应和滚筒-扣链齿的冲击而产生的噪音对于滚筒链传动来说是最本质的。图1 链滚筒的切入速度图1描述了在在滚筒即将啮合时链的位置和扣链齿的位置。在啮合之后,滚筒的速度、距中心的距离和扣链齿的的啮合程度将会一致,即,VA和VS分别为滚筒啮合前后的速度,R为包围的圆周半径,n为扣链齿的回转速度单位是r.p.m。速度VA和VS大小是相同的,但方向是不同的。因此滚筒的冲击速度与连接的振动量P有关。这里指出,在滚筒与扣链齿啮合的那一刹那,具有非常大的冲击速度。与扣链齿啮合时,滚筒上比较大的冲击速度导致滚筒和扣链齿的柔性振动,并且挤入的滚筒有一个加速度的振动,这个振动依次冲击周围的区域,引起周围空气的突然变化而产生噪音。因此,一个捕捉链传动工作系统全部噪音能量的计算应该是让N1和N2分别地代表滚筒和扣链齿的数量来计算。在实验中通过对链传动模型中滚筒和扣链齿冲击的详细测量后,我们发现,在很短的时间内,当任意一个滚筒与扣链齿啮合时,扣链齿的柔性振动回应要比滚筒的振动所进一步感应的噪音低很多。因此,在噪音水平测试的模型中是可以忽略扣链齿的噪音的。很多连续的链滚筒与扣链齿的啮合可以被做成动态的模型,如:一系列的振动圆筒。如图2所示为圆筒纵剖系统r、和z中,为单位动能,C是声音在空气中的速度,t是时间。那么,将会决定声音所受的压力,p,粒子的速度,Ur的关系。如果振动圆筒以速度voejt,动能(r、z)为函数H1(2)(kr)的二阶倒数,是振动角速度,而且k和/C相等。如果振动的参考模型与圆筒表面速度之间的夹角为,那么它们相交的边界则是圆筒的半径。在关系式(8)中的系数A是在(10)中获得的,H1(2)(kr)中的系数kr,当r=时H1(2)(kr)是与H1(2)(k)有区别的。把A带入等式(8)中,动能的函数等式将如(11)所示。图2 圆筒的纵剖系统当知道速度变换的傅立叶函数之后,振动圆筒在任何时间的任意速度的动能将能由傅立叶综合函数获得。在任意时间任意vo()的动能是(12)。如果圆筒的速度是由于单位加速度引起的,那么它变换是任意变常数B是()和(13)的三角函数。动能经过一个单位变加速度后变为(14)。由k/C、加速度的动能、(t)可得振动圆筒的动能是(15)。Bessel功能是Hankel的第三种功能。同样地屈服参考是Hankel的第二种功能,此功能可以简单的以(16)定义,分别的对于(v,n)令v0,1,2来调用Hankel功能。(v,n)当n等于1和2时,被分别的计算,如:由于提供的x很大,等式(16)可以被认为在n3时忽略其值,认为无限的接近(17)。这种近似计算的方法,对于计算动能的准确性并没有十分大的影响。因此,第一个次序第二个类型的Hankel功能可以被表示为:依照各种Bessel的再现关系功能,第二个类型的Hankel功能第一个次序的引出物(19)H0(2)(x)和H2(2)(x)分别地是零和第二个类型的第二个 Hankel功能(20)(21)。H1(2)(x)如(22)所示。令x分别带入等式(19)、(20)内,替换kr和k,等式(14)可以转化为(23)。这个等式将被整合成为一个复杂的模型。将10,2l1+jl2,3=-l1+jl2,带入等式(24)并整合,。等式(25)将会解决等式(23)所表现出相互剩余资源的获取。这一个格式与Wang和Tong的参考中的非常相似,他们使用它对于正弦和余弦期限来预测来自两个圆筒的冲击噪音放射线,但不同的是支架和那些之前的系数。从上述的相等,我们可以发现在这个领域中,冲击圆筒那复杂的噪音辐射。然而,对于远的声音领域,也就是,r,等式(25)可以被单一化,如(26)。同样地,(27)是解决等式(15)的方法。压力在由滚筒的冲击加速所引起的点P(r,)由(28)可得,0是空气的密度,01.2 kg/m3。 对抗扣链齿的滚筒的冲击是在很短的时间中发生的,合理的办法是只考虑每个滚筒,而并不是总体来考虑。因此总的加速挤入的滚筒的压力所产生的噪音辐射也将被来自滚筒的总数分开,也就是说,如(29)所示。附录BEFFICIENT MODELLING AND PREDICTION OF MESHING NOISE FROM CHAIN DRIVESH. ZHENG, Y. Y. WANG, G. R. LIU AND K. Y. LAMInstitute of High Performance Computing, Science Park I, Singapore 118261K. P. QUEK, T. ITO AND Y. NOGUCHIThis paper presents a practical approach for predicting the meshing noise due to the impact of chain rollers against the sprocket of chain drives. An acoustical model relating dynamic response of rollers and its induced sound pressure is developed based on the fact that the acoustic field is mainly created by oscillating rigid cylindrical rollers. Finite element techniques and numerical software codes are employed to model and simulate the acceleration response of each chain roller which is necessary for noise level prediction of a chain drive under varying operation conditions and different sprocket configurations. The predicted acoustic pressure levels of meshing noise are compared with the available experimental measurements. It is shown that the predictions are in reasonable agreement with the experiments and the approach enables designers to obtain required information on the noise level of a selected chain drive in a time- and cost-efficient manner.INTRODUCTIONThe application of chain drives can be found extensively in nearly all mechanical industries ranging from machine tools, marine and aerospace drives to motorcycles and the timing system for automotive engines. The noise and vibration of chain drives have been of concern in the design of this kind of power transmission system. This situation should be attributed to the fact that chain drives are characterized by the discrete nature of the chain links and sprocket teeth. Undesirable noise and vibration have driven researchers to make their contributions on the dynamic behavior and vibration analyses of chain drive systems.On the subject of vibration and noise analyses of chain drive systems, five major categories may be classified as noise source identification, load distribution analysis, kinematic analysis, dynamic and vibration analysis, and noise and vibration control. Literature survey shows that, while there have been many contributions made on the topic of load analysis, kinematic analysis, and dynamics and vibration analysis, the analytical study and prediction of chain drive noise have been quite limited.Major noise sources in roller chain drives have been identified experimentally by Uehara and Nakajima. It was found that the most significant source is from the impact between the chain link and the sprocket tooth during the meshing process. This so-called “meshing noise”is closely related to the overall dynamic behavior of the chain and various parameters. A further experiment conducted by Stone et al. also showed that the noise level and the impact during engagement are closely correlated. Liu et al. presented a comprehensive analysis of the chain/sprocket impact dynamics with analytical models including an axially moving chain dynamic model and a chain drive system dynamic model. Through experimental investigations, they illustrated a direct relationship between the chain/sprocket meshing impulsive loads and the nearfield sound pressure levels. To the best of the authors knowledge, a semi-empirical formula given by Uehara and Nakajima is so far the only one which may be used for the estimation of sound level of the meshing noise from chain drives. Before their formula can be used to estimate the noise radiation from a roller chain drive, several constants (C5 and C6 of equations and in reference) required for acoustic energy calculation must be determined through experimental measurements on similar chain drives. The boundary element method (BEM) has long been an effective numerical technique for the calculation of the acoustic radiation problem. The main advantage of BEM is the reduction of the structural discretization and data preparation time which results from the reduction of the dimensionality of the problem by one. However, BEM suffers from some shortcomings including evaluation of singular terms and handling the non-uniqueness of the solutions. Furthermore, owing to the limitations of data transfer interface between existing commercial software codes for structural analysis using finite element method (FEM) and those for acoustic radiation analysis using BEM, there still exist some difficulties in directly utilizing combined FEM/BEM to simulate the meshing noise from such a complicated mechanical system as a chain drive comprising a large number of discrete elements.Presented in this paper is a pratical approach for the noise level prediction of a roller chain drive. The approach divides the task of chain drive noise prediction into two steps. First, an acoustical model relating the dynamic response of rollers and its induced sound pressure is developed on the basis of the fact that the acoustic field is mainly created by oscillating rigid cylindrical rollers, and the numerical procedure for the noise level prediction of a roller chain drive is programmed on the basis of an acoustical model. Second, finite element modelling and simulation techniques are applied to analyze the impact responses of both the chain roller and sprocket. The simulation results of impact accelerations are read as input data in the developed software program for the calculation of the sound pressure at arbitrary points of observations.One merit of the presented approach is that it enables a designer to obtain his required information on the noise level of a chain drive in an efficient manner. Furthermore, since there are a number of commercially available computer-aided engineering (CAE) tools which can be employed for dynamics analysis of roller chain drives, the numerical procedure developed for calculating the noise level from a roller chain drive can be readily integrated into an existing CAE environment to create a complete virtual acoustical simulation capability for chain drive system design.ACOUSTICAL MODELIt has been identified that the meshing noise, which is caused by the interaction between the sprocket teeth and the chain rollers during their engagements, is the first and most significant noise source in the roller chain drives. The polygonal action and the roller-sprocket impact, being intrinsic for roller chain drives, are responsible for the meshing noise creating mechanism.Figure 1. Impact velocity of chain rollers.Figure 1 depicts the position of the chain and sprocket at an infinitesimal time depicted before roller A is seated. The relative impact velocity of the roller is the velocity between the center of the roller and the point on the sprocket pitch circle which will be coincident with the roller center after seating, namely, where VA and VS are the roller velocity before and after seating, respectively, where R is the sprocket pitch circle radius and n is the rotational speed of the sprocket in r.p.m.Although the magnitudes of the velocities VA and VS are the same, the directions are different. So the relative impact velocity of the roller is where P is the link pitch.This indicates that there exists a very big relative impact velocity at an infinitesimal time when a roller is picked up by the sprocket teeth. The relative impact velocity of the roller onto the sprocket teeth causes the roller and sprocket to vibrate with elastic vibrations and a large rigid acceleration of the impacting roller, of which the latter in turn causes a sudden change of the pressure of the air around the impact area. So the calculation of sound energy of the meshing noise generated by a chain drive system should consider the contributions of both rollers and sprockets as where N1 and N2 are, respectively, the number of sprockets and chain rollers. Through a large amount of detailed modelling of the impact between roller and sprocket and detailed experimental measurements on noise radiation from concerned chain drives 20, we found that, during the very short period when a roller is picked by the sprocket, the elastic vibration response of the sprocket and further induced noise level are much lower than those due to the vibration of rollers. So it is fair to neglect the contribution of the sprockets in developing the acoustical model for noise level prediction.The chain rollers that are engaging successively with the sprocket teeth may be modelled as a series of oscillating cylinders. The acoustic equation for the cylinder in a cylindrical co-ordinate system r, h and Z as shown in Figure 2 is given bywhere is the velocity potential, C is the sound speed in the air, t is time. The sound pressure, p, the particle velocity, Ur, are determined by the relation.If the oscillating cylinder vibrates with a velocity of voejt, the velocity potential (r、z) becomeswhere H1(2)(kr) is the second kind Hankel function (first order), is the angular frequency of oscillation and k is equal to /C. If the plane of vibration is taken as the reference plane, the angle between the velocity of the cylinder surface and the plane of vibration is , then with the boundary conditionFigure 2. Cylindrical co-ordinate system.where a is the radius of the cylinder. Coefficient A in equation (8) can be therefore obtained aswhere H1(2)(kr)is the differentiation of H1(2)(kr)with respect to H1(2)(k) at r=. Substituting A into equation (8), the velocity potential is obtained as The velocity potential for any arbitrary velocity of the oscillating cylinder can be obtained by Fourier synthesis of this solution when the Fourier transform of the velocity is known. The velocity potential for an arbitrary vo() isIf the velocity of the cylinder is due to a unit impulse of acceleration, then its transform iswhere B is an arbitrary constant and () is the Delta function. The velocity potential due to a unit impulsive acceleration then becomesUsing the expression k/C, the velocity potential from the acceleration, a(t), of the oscillating cylinder isThe Hankel function is the third kind Bessel function. As given in reference, the asymptotic expansion of the second kind Hankel function is a simple expression given as where (v,n) is a symbol which is defined aswhere v0,1,2 are, respectively, for the zero, first and second order Hankel functions.The values of (v,n) when n equals 1 and 2 are calculated, respectively, asProvided that the variable x is not very small, equation (16) can be approximated aswith neglecting other terms for n3 inside parentheses. This simplification does not significantly deteriorate the accuracy of calculating the velocity potential of the sound field, especially for a far field.So the first order Hankel function of the second kind can be expressed asAccording to the recurrence relation of all kinds of Bessel functions, the derivative of the the first order Hankel function of the second kind is related to its zero and second orders aswhere H0(2)(x) and H2(2)(x) are, respectively, the zero and the second order Hankel functions of the second kind,So the derivative of H1(2)(x)isSubstituting kr and ka for x into equations (19) and (20), respectively, equation (14) becomesThis equation is evaluated by contour integration in the complex plan. By solving the equation three singularities of the function to be integrated are attained as10, 2l1+jl2, 3=-l1+jl2,whereCorrelative residuals are derived to obtain the solution of equation (23) asThis equation is quite similar in format to the one derived by Wang and Tong in reference , where they use it to predict the noise radiation from the impact of two cylinders, but of difference are the coefficient before the flower bracket and those for sine and cosine terms.From the above derived equation, one can see that the near sound field is radiated in a complex manner by an impact cylinder. However, for the far sound field, i.e., r equation (25) can be simplified asSimilarly, the solution of equation (15) isThe sound pressure at point P(r,)caused by the impact acceleration of a roller is given bywhere 0 is the density of the air medium, 01.2 kg/m3.As the impact of the roller against the sprocket occurs in a very short duration, it is reasonable to consider each roller independent of the others. So the total sound pressure radiated by the acceleration of all impacting rollers is taken simply as the sum of those from the rollers separately, i.e.,EFFICIENT MODELLING AND PREDICTION OF MESHING NOISE FROM CHAIN DRIVESH. ZHENG, Y. Y. WANG, G. R. LIU AND K. Y. LAMInstitute of High Performance Computing, Science Park I, Singapore 118261K. P. QUEK, T. ITO AND Y. NOGUCHIThis paper presents a practical approach for predicting the meshing noise due to the impact of chain rollers against the sprocket of chain drives. An acoustical model relating dynamic response of rollers and its induced sound pressure is developed based on the fact that the acoustic field is mainly created by oscillating rigid cylindrical rollers. Finite element techniques and numerical software codes are employed to model and simulate the acceleration response of each chain roller which is necessary for noise level prediction of a chain drive under varying operation conditions and different sprocket configurations. The predicted acoustic pressure levels of meshing noise are compared with the available experimental measurements. It is shown that the predictions are in reasonable agreement with the experiments and the approach enables designers to obtain required information on the noise level of a selected chain drive in a time- and cost-efficient manner.INTRODUCTIONThe application of chain drives can be found extensively in nearly all mechanical industries ranging from machine tools, marine and aerospace drives to motorcycles and the timing system for automotive engines. The noise and vibration of chain drives have been of concern in the design of this kind of power transmission system. This situation should be attributed to the fact that chain drives are characterized by the discrete nature of the chain links and sprocket teeth. Undesirable noise and vibration have driven researchers to make their contributions on the dynamic behavior and vibration analyses of chain drive systems.On the subject of vibration and noise analyses of chain drive systems, five major categories may be classified as noise source identification, load distribution analysis, kinematic analysis, dynamic and vibration analysis, and noise and vibration control. Literature survey shows that, while there have been many contributions made on the topic of load analysis, kinematic analysis, and dynamics and vibration analysis, the analytical study and prediction of chain drive noise have been quite limited. Major noise sources in roller chain drives have been identified experimentally by Uehara and Nakajima. It was found that the most significant source is from the impact between the chain link and the sprocket tooth during the meshing process. This so-called “meshing noise”is closely related to the overall dynamic behavior of the chain and various parameters. A further experiment conducted by Stone et al. also showed that the noise level and the impact during engagement are closely correlated. Liu et al. presented a comprehensive analysis of the chain/sprocket impact dynamics with analytical models including an axially moving chain dynamic model and a chain drive system dynamic model. Through experimental investigations, they illustrated a direct relationship between the chain/sprocket meshing impulsive loads and the nearfield sound pressure levels. To the best of the authors knowledge, a semi-empirical formula given by Uehara and Nakajima is so far the only one which may be used for the estimation of sound level of the meshing noise from chain drives. Before their formula can be used to estimate the noise radiation from a roller chain drive, several constants (C5 and C6 of equations and in reference) required for acoustic energy calculation must be determined through experimental measurements on similar chain drives. The boundary element method (BEM) has long been an effective numerical technique for the calculation of the acoustic radiation problem. The main advantage of BEM is the reduction of the structural discretization and data preparation time which results from the reduction of the dimensionality of the problem by one. However, BEM suffers from some shortcomings including evaluation of singular terms and handling the non-uniqueness of the solutions. Furthermore, owing to the limitations of data transfer interface between existing commercial software codes for structural analysis using finite element method (FEM) and those for acoustic radiation analysis using BEM, there still exist some difficulties in directly utilizing combined FEM/BEM to simulate the meshing noise from such a complicated mechanical system as a chain drive comprising a large number of discrete elements.Presented in this paper is a pratical approach for the noise level prediction of a roller chain drive. The approach divides the task of chain drive noise prediction into two steps. First, an acoustical model relating the dynamic response of rollers and its induced sound pressure is developed on the basis of the fact that the acoustic field is mainly created by oscillating rigid cylindrical rollers, and the numerical procedure for the noise level prediction of a roller chain drive is programmed on the basis of an acoustical model. Second, finite element modelling and simulation techniques are applied to analyze the impact responses of both the chain roller and sprocket. The simulation results of impact accelerations are read as input data in the developed software program for the calculation of the sound pressure at arbitrary points of observations.One merit of the presented approach is that it enables a designer to obtain his required information on the noise level of a chain drive in an efficient manner. Furthermore, since there are a number of commercially available computer-aided engineering (CAE) tools which can be employed for dynamics analysis of roller chain drives, the numerical procedure developed for calculating the noise level from a roller chain drive can be readily integrated into an existing CAE environment to create a complete virtual acoustical simulation capability for chain drive system design.ACOUSTICAL MODELIt has been identified that the meshing noise, which is caused by the interaction between the sprocket teeth and the chain rollers during their engagements, is the first and most significant noise source in the roller chain drives. The polygonal action and the roller-sprocket impact, being intrinsic for roller chain drives, are responsible for the meshing noise creating mechanism.Figure 1. Impact velocity of chain rollers.Figure 1 depicts the position of the chain and sprocket at an infinitesimal time depicted before roller A is seated. The relative impact velocity of the roller is the velocity between the center of the roller and the point on the sprocket pitch circle which will be coincident with the roller center after seating, namely, where VA and VS are the roller velocity before and after seating, respectively, where R is the sprocket pitch circle radius and n is the rotational speed of the sprocket in r.p.m.Although the magnitudes of the velocities VA and VS are the same, the directions are different. So the relative impact velocity of the roller is where P is the link pitch.This indicates that there exists a very big relative impact velocity at an infinitesimal time when a roller is picked up by the sprocket teeth. The relative impact velocity of the roller onto the sprocket teeth causes the roller and sprocket to vibrate with elastic vibrations and a large rigid acceleration of the impacting roller, of which the latter in turn causes a sudden change of the pressure of the air around the impact area. So the calculation of sound energy of the meshing noise generated by a chain drive system should consider the contributions of both rollers and sprockets as where N1 and N2 are, respectively, the number of sprockets and chain rollers. Through a large amount of detailed modelling of the impact between roller and sprocket and detailed experimental measurements on noise radiation from concerned chain drives 20, we found that, during the very short period when a roller is picked by the sprocket, the elastic vibration response of the sprocket and further induced noise level are much lower than those due to the vibr
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:蛇形带式输送机的结构设计分析含开题及3张CAD图
链接地址:https://www.renrendoc.com/paper/206617855.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!