两位数乘法速算技巧58620_第1页
两位数乘法速算技巧58620_第2页
两位数乘法速算技巧58620_第3页
两位数乘法速算技巧58620_第4页
两位数乘法速算技巧58620_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、两位数乘法速算技巧原理:设两位数分别为10A+B,10C+D,其积为S,根据多项式展开: S= (10A+B) ×(10C+D)=10A×10C+ B×10C+10A×D+ B×D,而所谓速算,就是根据其中一些相等或互补(相加为十)的关系简化上式,从而快速得出结果。 注:下文中 “-”代表十位和个位,因为两位数的十位相乘得数的后面是两个零,请大家不要忘了,前积就是前两位,后积是后两位,中积为中间两位, 满十前一,不足补零. A.乘法速算 一前数相同的: 1.1.十位是1,个位互补,即A=C=1,B+D=10,S=(10+B+D)×10

2、+A×B 方法:百位为二,个位相乘,得数为后积,满十前一。 例:13×17 13 + 7 = 2- - ( “-”在不熟练的时候作为助记符,熟练后就可以不使用了) 3 × 7 = 21 - 221 即13×17= 221 1.2.十位是1,个位不互补,即A=C=1, B+D10,S=(10+B+D)×10+A×B 方法:乘数的个位与被乘数相加,得数为前积,两数的个位相乘,得数为后积,满十前一。 例:15×17 15 + 7 = 22- ( “-”在不熟练的时候作为助记符,熟练后就可以不使用了) 5 × 7 = 35

3、 - 255 即15×17 = 255 1.3.十位相同,个位互补,即A=C,B+D=10,S=A×(A+1)×10+A×B 方法:十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积 例:56 × 54 (5 + 1) × 5 = 30- - 6 × 4 = 24 - 3024 1.4.十位相同,个位不互补,即A=C,B+D10,S=A×(A+1)×10+A×B 方法:先头加一再乘头两,得数为前积,尾乘尾,的数为后积,乘数相加,看比十大几或小几,大几就加几个乘数的头乘十,反之亦

4、然 例:67 × 64 (6+1)×6=42 7×4=28 7+4=11 11-10=1 4228+60=4288 - 4288 方法2:两首位相乘(即求首位的平方),得数作为前积,两尾数的和与首位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积。 例:67 × 64 6 ×6 = 36- - (4 + 7)×6 = 66 - 4 × 7 = 28 - 4288 二、后数相同的: 2.1. 个位是1,十位互补 即 B=D=1, A+C=10 S=10A×10C+101 方法:十位与十位相乘,得数为前积,加上1

5、01.。 - -8 × 2 = 16- - 101 - 1701 2.2. <不是很简便>个位是1,十位不互补 即 B=D=1, A+C10 S=10A×10C+10C+10A +1 方法:十位数乘积,加上十位数之和为前积,个位为1.。 例:71 ×91 70 × 90 = 63 - - 70 + 90 = 16 - 1 - 6461 2.3个位是5,十位互补 即 B=D=5, A+C=10 S=10A×10C+25 方法:十位数乘积,加上十位数之和为前积,加上25。 例:35 × 75 3 × 7+ 5 = 2

6、6- - 25 - 2625 2.4<不是很简便>个位是5,十位不互补 即 B=D=5, A+C10 S=10A×10C+525 方法:两首位相乘(即求首位的平方),得数作为前积,两十位数的和与个位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积。 例: 75 ×95 7 × 9 = 63 - - (7+ 9)× 5= 80 - 25 - 7125 2.5. 个位相同,十位互补 即 B=D, A+C=10 S=10A×10C+B100+B2 方法:十位与十位相乘加上个位,得数为前积,加上个位平方。 例:86 × 26

7、 8 × 2+6 = 22- - 36 - 2236 2.6.个位相同,十位非互补 方法:十位与十位相乘加上个位,得数为前积,加上个位平方,再看看十位相加比10大几或小几,大几就加几个个位乘十,小几反之亦然 例:73×43 7×4+3=31 9 7+4=11 3109 +30=3139 - 3139 2.7.个位相同,十位非互补速算法2 方法:头乘头,尾平方,再加上头加尾的结果乘尾再乘10 例:73×43 7×4=28 9 2809+(7+4)×3×10=2809+11×30=2809+330=3139 - 313

8、9 三、特殊类型的: 3.1、一因数数首尾相同,一因数十位与个位互补的两位数相乘。 方法:互补的那个数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0补。 例: 66 × 37 (3 + 1)× 6 = 24- - 6 × 7 = 42 - 2442 3.2、一因数数首尾相同,一因数十位与个位非互补的两位数相乘。 方法:杂乱的那个数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0补,再看看非互补的因数相加比10大几或小几,大几就加几个相同数的数字乘十,反之亦然 例:38×44 (3+

9、1)*4=12 8*4=32 1632 3+8=11 11-10=1 1632+40=1672 - 1672 3.3、一因数数首尾互补,一因数十位与个位不相同的两位数相乘。 方法:乘数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0补,再看看不相同的因数尾比头大几或小几,大几就加几个互补数的头乘十,反之亦然 例:46×75 (4+1)*7=35 6*5=30 5-7=-2 2*4=8 3530-80=3450 - 3450 3.4、一因数数首比尾小一,一因数十位与个位相加等于9的两位数相乘。 方法:凑9的数首位加1乘以首数的补数,得数为前积,首比尾

10、小一的数的尾数的补数乘以凑9的数首位加1为后积,没有十位用0补。 例:56×36 10-6=4 3+1=4 5*4=20 4*4=16 - 2016 3.5、两因数数首不同,尾互补的两位数相乘。 方法:确定乘数与被乘数,反之亦然。被乘数头加一与乘数头相乘,得数为前积,尾乘尾,得数为后积。再看看被乘数的头比乘数的头大几或小几,大几就加几个乘数的尾乘十,反之亦然 例:74×56 (7+1)*5=40 4*6=24 7-5=2 2*6=12 12*10=120 4024+120=4144 - 4144 3.6、两因数首尾差一,尾数互补的算法 方法:不用向第五个那么麻烦了,取大的头

11、平方减一,得数为前积,大数的尾平方的补整百数为后积 例:24×36 3>2 3*3-1=8 62=36 100-36=64 - 864 3.7、近100的两位数算法 方法:确定乘数与被乘数,反之亦然。再用被乘数减去乘数补数,得数为前积,再把两数补数相乘,得数为后积(未满10补零,满百进一) 例:93×91 100-91=9 93-9=84 100-93=7 7*9=63 - 8463 、平方速算 一、求1119 的平方 同上1.2,乘数的个位与被乘数相加,得数为前积,两数的个位相乘,得数为后积,满十前一 例:17 × 17 17 7 = 24- 7 

12、5; 7 = 49 - 289 三、个位是5 的两位数的平方 同上1.3,十位加1 乘以十位,在得数的后面接上25。 例:35 × 35 (3 + 1)× 3 = 12- 25 - 1225 四、十位是5 的两位数的平方 同上2.5,个位加25,在得数的后面接上个位平方。 例: 53 ×53 25 + 3 = 28- 3× 3 = 9 - 2809 四、2150 的两位数的平方 求2550之间的两数的平方时,记住125的平方就简单了, 1119参照第一条,下面四个数据要牢记: 21 × 21 = 441 22 × 22 = 484 2

13、3 × 23 = 529 24 × 24 = 576 求2550 的两位数的平方,用底数减去25,得数为前积,50减去底数所得的差的平方作为后积,满百进1,没有十位补0。 例:37 × 37 37 - 25 = 12- (50 - 37)2 = 169 - 1369 、加减法 一、补数的概念与应用 补数的概念:补数是指从10、100、1000中减去某一数后所剩下的数。 例如10减去9等于1,因此9的补数是1,反过来,1的补数是9。 补数的应用:在速算方法中将很常用到补数。例如求两个接近100的数的乘法或除数,将看起来复杂的减法运算转为简单的加法运算等等。 、除法速算 一、某数除以5、25、125时 1、 被除数 ÷ 5 = 被除数 ÷ (10 ÷ 2) = 被除数 ÷ 10 × 2 = 被除数 × 2 ÷ 10 2、 被除数 ÷ 25 = 被除数 

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论