资源目录
压缩包内文档预览:(预览前20页/共27页)
编号:207897277
类型:共享资源
大小:5.70MB
格式:ZIP
上传时间:2022-04-13
上传人:机****料
认证信息
个人认证
高**(实名认证)
河南
IP属地:河南
50
积分
- 关 键 词:
-
便携式
手机充电器
注塑
设计
- 资源描述:
-
便携式手机充电器上盖的注塑模设计,便携式,手机充电器,注塑,设计
- 内容简介:
-
编号 毕业设计(论文)相关资料题目:基于Pro/E的便携式手机充电器 上盖注塑模设计 信机 系 机械工程及其自动化 专业学 号:学生姓名:指导教师: 目 录一、毕业设计(论文)开题报告二、毕业设计(论文)外文资料翻译及原文三、学生“毕业论文(论文)计划、进度、检查及落实表”四、实习鉴定表 毕业设计(论文)开题报告题目:基于Pro/E的便携式手机充电器 上盖注塑模设计 信机 系 机械工程及自动化 专业学 号:学生姓名:指导教师: 课题来源本课题来源于生活生产实际。科学依据(包括课题的科学意义;国内外研究概况、水平和发展趋势;应用前景等)(1)课题科学意义 随着现代制造技术的迅速发展、计算机技术的应用,在玩具产业中模具已经成为生产各种玩具不可缺少的重要工艺装备。特别是在塑料产品的生产过程中,塑料模具的应用及其广泛,在各类模具中的地位也越来越突出,成为各类模具设计、制造与研究中最具有代表意义的模具之一。而注塑模具已经成为制造塑料制造品的主要手段之一,且发展成为最有前景的模具之一。注射成型是当今市场上最常用、最具前景的塑料成型方法之一,因此注塑模具作为塑料模的一种,就具有很大的市场需求量。所以我选充电器注塑模具设计作为我毕业设计的课题。 本课题应用性强,涉及的知识面与知识点较多,如注塑成型、模具设计、三维造型、运动仿真以及二维三维软件的应用。(2) 研究状况及其发展前景 近年来我国的模具技术有了很大的发展,在大型模具方面,已能生产大屏彩电注塑模具、大容量洗衣机全套塑料模具以及汽车保险杠和整体仪表板等塑料模具。机密塑料模具方面,已能生产照相机塑料件模具、多型腔小模数齿轮模具及塑封模具。 在成型工艺方面,多材质塑料成行模、高效多色注塑模、镶件互换结构和抽芯脱模机构的创新业取得了较大进展。气体辅助注射成形技术的使用更趋成熟。热流道模具开始推广,有些单位还采用具有世界先进水平的高难度针阀式热流道模具。 在制造方面,CAD/CAM/CAE技术的应用上了一个新台阶,一些企业引进CAD/CAM系统,并能支持CAE技术对成形过程进行分析。近年来我国自主开发的塑料膜CAD/CAM系统有了很大发展,如北航华正软件工程研究所开发的CAXA系统、华中理工大学开发的注塑模HSC5.0系统及CAE软件等。优化模具系统结构设计和型件的CAD/CAE/CAM,并使之趋于智能化,提高型件成形加工工艺和模具标准化水平,提高模具制造精度与质量,降低型件表面研磨、抛光作业量和缩短制造周期;研究、应用针对各类模具型件所采用的高性能、易切削的专用材料,以提高模具使用性能;为适应市场多样化和个性化,应用快速原型制造技术和快速制模技术,以快速制造成塑料注塑模,缩短新产品试制周期。这些是未来520年注塑模具生产技术的总体发展趋势,具体表现在以下几个方面:1.提高大型、精密、复杂、长寿命模具的设计水平及比例。这是由于塑料模成型的制品日渐大型化、复杂化和高精度要求以及因高生产率要求而发展的一模多腔所致。 2.在塑料模设计制造中全面推广应用CAD/CAM/CAE技术。CAD/CAM软件的智能化程度将逐步提高;塑料制件及模具的3D设计与成型过程的3D分析将在我国塑料模具工业中发挥越来越重要的作用。 3.推广应用热流道技术、气辅注射成型技术和高压注射成型技术。采用热流道技术的模具可提高制件的生产率和质量,并能大幅度节省塑料制件的原材料和节约能源,所以广泛应用这项技术是塑料模具的一大变革。制订热流道元器件的国家标准,积极生产价廉高质量的元器件,是发展热流道模具的关键。气体辅助注射成型可在保证产品质量的前提下,大幅度降低成本。气体辅助注射成型比传统的普通注射工艺有更多的工艺参数需要确定和控制,而且常用于较复杂的大型制品,模具设计和控制的难度较大,因此,开发气体辅助成型流动分析软件,显得十分重要。另一方面为了确保塑料件精度,继续研究开发高压注射成型工艺与模具也非常重要。 4.开发新的成型工艺和快速经济模具。以适应多品种、少批量的生产方式。 5.提高塑料模标准化水平和标准件的使用率。我国模具标准件水平和模具标准化程度仍较低,与国外差距甚大,在一定程度上制约着我国模具工业的发展,为提高模具质量和降低模具制造成本,模具标准件的应用要大力推广。为此,首先要制订统一的国家标准,并严格按标准生产;其次要逐步形成规模生产,提高商品化程度、提高标准件质量、降低成本;再次是要进一步增加标准件的规格品种。 6.应用优质材料和先进的表面处理技术对于提高模具寿命和质量显得十分必要。 研究内容本课题主要是针对显示器后盖的模具设计,通过对塑件进行工艺的分析和比较,最终设计出一副注塑模。该课题从产品结构工艺性,具体模具结构出发,通过查阅相关资料,对塑件的材料进行分析和选用,并且对塑件的结构,成型工艺进行分析和确定。模具的设计需要对的浇注系统、模具成型部分的结构、顶出系统、冷却系统、注塑机的选择及有关参数的校核、都有详细的设计,同时并简单的编制了模具的加工工艺。其中模具的成型部分的设计包括分型面的设计,浇注系统的设计,成型零件的工作尺寸和外形尺寸的设计模架的设计包括模架的组成,相关零部件的尺寸设计,各零部件的用途,以及模拟模架的开模,合模。最后还要有对成型零件,模架的安装尺寸,合模力,顶出力,开模行程的校核,确保所设计的模具符合要求。拟采取的研究方法、技术路线、实验方案及可行性分析研究方法:通过阅读有关资料,文献,收集筛选,整理课题研究所需的有关数据,理论依据,综合运用所学理论知识研究论文课题。方案设计:在工艺分析的基础上,综合考虑产品的产量和精度要求。所用材料的性能,设备情况及模具制造情况,确定该工件的工艺规程和每道工序的注塑模结构形式。结构设计:在方案设计的基础上,进一步设计模具各部分零件的具体结构尺寸。1注塑的工艺分析:分析塑件的结构形状,尺寸精度,材料是否符合,注塑工艺要求,从而确定注塑的可能性。2确定注塑模工艺方案及模具结构形式:工序数目,工序性质,工序顺序,工序组合及模具结构形式。3注塑模具的设计计算。注塑压力、注射的塑件的体积,所需原来的体积,成型时间确定,确定各主要零件的外形尺寸,计算模具的闭合高度,确定所用注塑机。4 绘制注塑模总装图5通过对论文课题的学习研究,达到巩固,扩大,深化已学理论知识,提高思考分析解决实际问题等综合素质的目的。研究计划及预期成果研究计划:实习调研、开题准备、工艺设计和拟定、模具结构设计、编写设计说明书。2012年11月12日-2012年12月12日:查阅论文相关参考资料,填写开题报告书。2012年12月30日-2013年1月20日:填写毕业实习报告。2013年3月11日-2013年3月15日:学习模具设计以及相关知识,考虑设计。2013年3月16日-2013年3月17日:翻译一篇相关的英文材料,规划整体方案。2013年3月18日-2013年4月26日:明确塑件设计要求及批量,计算塑件的体积和质量,注塑机的确定;模具成型零件的工作尺寸有关计算;图表配图设计及相关计算。2013年4月22日-2013年4月26日:Pro/E、CAD绘图。2013年5月6日-2013年5月24日:毕业论文撰写和修改工作。预期成果:本课题旨在通过对显示器外壳产品的模具设计,系统的了解塑料及塑料的成型基本理论,能够正确分析成型工艺对模具的要求。掌握塑件的成型工艺分析方法,能根据塑件的正确使用和工艺要求进行一般的塑件产品设计。掌握各类塑料模具结构特点,零部件设计与计算,具备独立中等复杂的注射模具的能力。了解塑料模具材料的选用和新技术发展等其他知识。培养分析问题以及运用所学知识解决实际工程问题的综合能力。特色或创新之处手机充电器是我们日常生活中不可缺少的电器,各个厂商生产的便携式手机充电器都不一样,但是现在越来越多的消费者注重了便携式手机充电器的外观、实用性等等。有着新颖外观切使用的显示器是非常受广大消费者的喜爱,所以各个生产厂商努力设计生产出各种新颖时尚切安全使用的便携式手机充电器吸引消费者的眼球。已具备的条件和尚需解决的问题已具备的条件:已具备的条件:已学过的塑料成型加工工艺、注塑模具的设计,并结合日常生活中所积累的相关知识,询问老师和有工作经验者,同时有部分可参考的同类设计资料及图纸。尚需解决的问题:缺乏实践经验,并需要老师在设计过程中加以指导尚需解决的问题:理论与实践有着不可避免的差距,由于没有设计经验,在实际设计时,会遇到许多问题。而且平时没把三维软件学好,设计绘图时耗费很大精力和时间。自身设计能力需要实践经验进一步加强巩固。指导教师意见 指导教师签名:年 月 日教研室(学科组、研究所)意见 教研室主任签名: 年 月 日系意见 主管领导签名: 年 月 日英文原文CONCURRENT DESIGN OF PLASTICS INJECTION MOULDS Assist.Prof.Dr. A. YAYLA /Prof.Dr. Pa a YAYLAAbstract The plastic product manufacturing industry has been growing rapidly in recent years. One of the most popular processes for making plastic parts is injection moulding. The design of injection mould is critically important to product quality and efficient product processing. Mould-making companies, who wish to maintain the competitive edge, desire to shorten both design and manufacturing leading times of the by applying a systematic mould design process. The mould industry is an important support industry during the product development process, serving as an important link between the product designer and manufacturer. Product development has changed from the traditional serial process of design, followed by manufacture, to a more organized concurrent process where design and manufacture are considered at a very early stage of design. The concept of concurrent engineering (CE) is no longer new and yet it is still applicable and relevant in todays manuf acturing environment. Team working spirit, management involvement, total design process and integration of IT tools are still the essence of CE. The application of The CE process to the design of an injection process involves the simultaneous consideration of plastic part design, mould design and injection moulding machine selection, production scheduling and cost as early as possible in the design stage. This paper presents the basic structure of an injection mould design. The basis of this system arises from an analysis of the injection mould design process for mould design companies. This injection mould design system covers both the mould design process and mould knowledge management. Finally the principle of concurrent engineering process is outlined and then its principle is applied to the design of a plastic injection mould. Keywords :Plastic injection mould design, Concurrent engineering, Computer aided engineering, Moulding conditions, Plastic injection moulding, Flow simulation 1. Introduction Injection moulds are always expensive to make, unfortunately without a mould it can not be possible ho have a moulded product. Every mould maker has his/her own approach to design a mould and there are many different ways of designing and building a mould. Surely one of the most critical parameters to be considered in the design stage of the mould is the number of cavities, methods of injection, types of runners, methods of gating, methods of ejection, capacity and features of the injection moulding machines. Mould cost, mould quality and cost of mould product are inseparableIn todays completive environment, computer aided mould filling simulation packages can accurately predict the fill patterns of any part. This allows for quick simulations of gate placements and helps finding the optimal location. Engineers can perform moulding trials on the computer before the part design is completed. Process engineers can systematically predict a design and process window, and can obtain information about the cumulative effect of the process variables that influence part performance, cost, and appearance. 2. Injection Moulding Injection moulding is one of the most effective ways to bring out the best in plastics. It is universally used to make complex, finished parts, often in a single step, economically, precisely and with little waste. Mass production of plastic parts mostly utilizes moulds. The manufacturing process and involving moulds must be designed after passing through the appearance evaluation and the structure optimization of the product design. Designers face a huge number of options when they create injection-moulded components. Concurrent engineering requires an engineer to consider the manufacturing process of the designed product in the development phase. A good design of the product is unable to go to the market if its manufacturing process is impossible or too expensive. Integration of process simulation, rapid prototyping and manufacturing can reduce the risk associated with moving from CAD to CAM and further enhance the validity of the product development. 3. Importance of Computer Aided Injection Mould Design The injection moulding design task can be highly complex. Computer Aided Engineering (CAE) analysis tools provide enormous advantages of enabling design engineers to consider virtually and part, mould and injection parameters without the real use of any manufacturing and time. The possibility of trying alternative designs or concepts on the computer screen gives the engineers the opportunity to eliminate potential problems before beginning the real production. Moreover, in virtual environment, designers can quickly and easily asses the sensitivity of specific moulding parameters on the quality and manufacturability of the final product. All theseCAE tools enable all these analysis to be completed in a meter of days or even hours, rather than weeks or months needed for the real experimental trial and error cycles. As CAE is used in the early design of part, mould and moulding parameters, the cost savings are substantial not only because of best functioning part and time savings but also the shortens the time needed to launch the product to the market. The need to meet set tolerances of plastic part ties in to all aspects of the moulding process, including part size and shape, resin chemical structure, the fillers used, mould cavity layout, gating, mould cooling and the release mechanisms used. Given this complexity, designers often use computer design tools, such as finite element analysis (FEA) and mould filling analysis (MFA), to reduce development time and cost. FEA determines strain, stress and deflection in a part by dividing the structure into small elements where these parameters can be well defined. MFA evaluates gate position and size to optimize resin flow. It also defines placement of weld lines, areas of excessive stress, and how wall and rib thickness affect flow. Other finite element design tools include mould cooling analysis for temperature distribution, and cycle time and shrinkage analysis for dimensional control and prediction of frozen stress and warpage. The CAE analysis of compression moulded parts is shown in Figure 1. The analysis cycle starts with the creation of a CAD model and a finite element mesh of the mould cavity. After the injection conditions are specified, mould filling, fiber orientation, curing and thermal history, shrinkage and warpage can be simulated. The material properties calculated by the simulation can be used to model the structural behaviour of the part. If required, part design, gate location and processing conditions can be modified in the computer until an acceptable part is obtained. After the analysis is finished an optimized part can be produced with reduced weldline (known also knitline), optimized strength, controlled temperatures and curing, minimized shrinkage and warpage. Machining of the moulds was formerly done manually, with a toolmaker checking each cut. This process became more automated with the growth and widespread use of computer numerically controlled or CNC machining centres. Setup time has also been significantly reduced through the use of special software capable of generating cutter paths directly from a CAD data file. Spindle speeds as high as 100,000 rpm provide further advances in high speed machining. Cutting materials have demonstrated phenomenal performance without the use of any cutting/coolant fluid whatsoever. As a result, the process of machining complex cores and cavities has been accelerated. It is good news that the time it takes to generate a mould is constantly being reduced. The bad news, on the other hand, is that even with all these advances, designing and manufacturing of the mould can still take a long time and can be extremely expensive. Figure 1 CAE analysis of injection moulded parts Many company executives now realize how vital it is to deploy new products to market rapidly. New products are the key to corporate prosperity. They drive corporate revenues, market shares, bottom lines and share prices. A company able to launch good quality products with reasonable prices ahead of their competition not only realizes 100% of the market before rival products arrive but also tends to maintain a dominant position for a few years even after competitive products have finally been announced (Smith, 1991). For most products, these two advantages are dramatic. Rapid product development is now a key aspect of competitive success. Figure 2 shows that only 37% of the product mix from the average industrial or electronics company is less than 5 years old. For companies in the top quartile, the number increases to 1525%. For world-class firms, it is 6080% (Thompson, 1996). The best companies continuously develop new products. At Hewlett-Packard, over 80% of the profits result from products less than 2 years old! (Neel, 1997) Figure 2. Importance of new product (Jacobs, 2000) With the advances in computer technology and artificial intelligence, efforts have been directed to reduce the cost and lead time in the design and manufacture of an injection mould. Injection mould design has been the main area of interest since it is a complex process involving several sub-designs related to various components of the mould, each requiring expert knowledge and experience. Lee et. al. (1997) proposed a systematic methodology and knowledge base for injection mould design in a concurrent engineering environment. 4. Concurrent Engineering in Mould Design Concurrent Engineering (CE) is a systematic approach to integrated product development process. It represents team values of co-operation, trust and sharing in such a manner that decision making is by consensus, involving all per spectives in parallel, from the very beginning of the product life-cycle (Evans, 1998). Essentially, CE provides a collaborative, co-operative, collective and simultaneous engineering working environment. A concurrent engineering approach is based on five key elements: 1. process 2. multidisciplinary team 3. integrated design model 4. facility 5. software infrastructure Figure 3 Methodologies in plastic injection mould design, a) Serial engineering b) Concurrent engineering In the plastics and mould industry, CE is very important due to the high cost tooling and long lead times. Typically, CE is utilized by manufacturing prototype tooling early in the design phase to analyze and adjust the design. Production tooling is manufactured as the final step. The manufacturing process and involving moulds must be designed after passing through the appearance evaluation and the structure optimization of the product design. CE requires an engineer to consider the manufacturing process of the designed product in the development phase. A good design of the product is unable to go to the market if its manufacturing process is impossible. Integration of process simulation and rapid prototyping and manufacturing can reduce the risk associated with moving from CAD to CAM and further enhance the validity of the product development.For years, designers have been restricted in what they can produce as they generally have to design for manufacture (DFM) that is, adjust their design intent to enable the component (or assembly) to be manufactured using a particular process or processes. In addition, if a mould is used to produce an item, there are therefore automatically inherent restrictions to the design imposed at the very beginning. Taking injection moulding as an example, in order to process a component successfully, at a minimum, the following design elements need to be taken into account: 1. . geometry; . draft angles, . Non re-entrants shapes, . near constant wall thickness, . complexity, . split line location, and . surface finish, 2. material choice; 3. rationalisation of components (reducing assemblies); 4. cost. In injection moulding, the manufacture of the mould to produce the injection-moulded components is usually the longest part of the product development process. When utilising rapid modelling, the CAD takes the longer time and therefore becomes the bottleneck. The process design and injection moulding of plastics involves rather complicated and time consuming activities including part design, mould design, injection moulding machine selection, production scheduling, tooling and cost estimation. Traditionally all these activities are done by part designers and mould making personnel in a sequential manner after completing injection moulded plastic part design. Obviously these sequential stages could lead to long product development time. However with the implementation of concurrent engineering process in the all parameters effecting product design, mould design, machine selection, production scheduling, tooling and processing cost are considered as early as possible in the design of the plastic part. When used effectively, CAE methods provide enormous cost and time savings for the part design and manufacturing. These tools allow engineers to virtually test how the part will be processed and how it performs during its normal operating life. The material supplier, designer, moulder and manufacturer should apply these tools concurrently early in the design stage of the plastic parts in order to exploit the cost benefit of CAE. CAE makes it possible to replace traditional, sequential decision-making procedures with a concurrent design process, in which all parties can interact and share information, Figure 3. For plastic injection moulding, CAE and related design data provide an integrated environment that facilitates concurrent engineering for the design and manufacture of the part and mould, as well as material selection and simulation of optimal process control parameters.Qualitative expense comparison associated with the part design changes is shown in Figure 4 , showing the fact that when design changes are done at an early stages on the computer screen, the cost associated with is an order of 10.000 times lower than that if the part is in production. These modifications in plastic parts could arise fr om mould modifications, such as gate location, thickness changes, production delays, quality costs, machine setup times, or design change in plastic parts. Figure 4 Cost of design changes during part product development cycle (Rios et.al, 2001) At the early design stage, part designers and moulders have to finalise part design based on their experiences with similar parts. However as the parts become more complex, it gets rather difficult to predict processing and part performance without the use of CAE tools. Thus for even relatively complex parts, the use of CAE tools to prevent the late and expensive design changesand problems that can arise during and after injection. For the successful implementation of concurrent engineering, there must be buy-in from everyone involved. 4. Case Study Figure 5 shows the initial CAD design of plastics part used for the sprinkler irrigation hydrant leg. One of the essential features of the part is that the part has to remain flat after injection; any warping during the injection causes operating problems. Another important feature the plastic part has to have is a high bending stiffness. A number of feeders in different orientation were added to the part as shown in Figure 5b. These feeders should be designed in a way that it has to contribute the weight of the part as minimum as possible. Before the design of the mould, the flow analysis of the plastic part was carried out with Moldflow software to enable the selection of the best gate location Figure 6a. The figure indicates that the best point for the gate location is the middle feeder at the centre of the part. As the distortion and warpage of the part after injection was vital from the functionality point of view and it has to be kept at a minimum level, the same software was also utilised to yiled the warpage analysis. Figure 5 b shows the results implying the fact that the warpage well after injection remains within the predefined dimensional tolerances. 6. Conclusions In the plastic injection moulding, the CAD model of the plastic part obtained from commercial 3D programs could be used for the part performance and injection process analyses. With the aid of CEA technology and the use of concurrent engineering methodology, not only the injection mould can be designed and manufactured in a very short of period of time with a minimised cost but also all potential problems which may arise from part design, mould design and processing parameters could be eliminated at the very beginning of the mould design. These two tools help part designers and mould makers to develop a good product with a better delivery and faster tooling with less time and money. References 1. Smith P, Reinertsen D, The time-to-market race, In: Developing Products in Half the Time. New York, Van Nostrand Reinhold, pp. 313, 1991 2.Thompson J, The total product development organization. Proceedings of the Second AsiaPacific Rapid Product Development Conference, Brisbane, 1996 3.Neel R, Dont stop after the prototype, Seventh International Conference on Rapid Prototyping, San Francisco, 1997 4.Jacobs PF, “Chapter 3: Rapid Product Development” in Rapid Tooling: Technologies and Industrial Applications , Ed. Peter D. Hilton; Paul F. Jacobs, Marcel Decker, 2000 5.Lee R-S, Chen, Y-M, and Lee, C-Z, “Development of a concurrent mould design system: a knowledge based approach”, Computer Integrated Manufacturing Systems, 10(4), 287-307, 1997 6.Evans B., “Simultaneous Engineering”, Mechanical Engineering , Vol.110, No.2, pp.38-39, 1998 7.Rios A, Gramann, PJ and Davis B, “Computer Aided Engineering in Compression Molding”, Composites Fabricators Association Annual Conference , Tampa Bay, 2001中文译文塑料注塑模具并行设计Assist.Prof.Dr. A. YAYLA /Prof.Dr. Pa a YAYLA摘要 塑料制品制造业近年迅速成长。其中最受欢迎的制作过程是注塑塑料零件。注塑模具的设计对产品质量和效率的产品加工非常重要。模具公司想保持竞争优势,就必须缩短模具设计和制造的周期。 模具是工业的一个重要支持行业,在产品开发过程中作为一个重要产品设计师和制造商之间的联系。产品开发经历了从传统的串行开发设计制造到有组织的并行设计和制造过程中,被认为是在非常早期的阶段的设计。并行工程的概念(CE)不再是新的,但它仍然是适用于当今的相关环境。团队合作精神、管理参与、总体设计过程和整合IT工具仍然是并行工程的本质。CE过程的应用设计的注射过程包括同时考虑塑件设计、模具设计和注塑成型机的选择、生产调度和成本中尽快设计阶段。 介绍了注射模具的基本结构设计。在该系统的基础上,模具设计公司分析注塑模具设计过程。该注射模设计系统包括模具设计过程及模具知识管理。最后的原则概述了塑料注射模并行工程过程并对其原理应用到设计。关键词:塑料注射模设计、并行工程、计算机辅助工程、成型条件、塑料注塑、流动模拟1、简介 注塑模具总是昂贵的,不幸的是没有模具就不可能生产模具制品。每一个模具制造商都有他/她自己的方法来设计模具,有许多不同的设计与建造模具。当然最关键的参数之一,要考虑到模具设计阶段是大量的计算、注射的方法,浇注的的方法、研究注射成型机容量和特点。模具的成本、模具的质量和制件质量是分不开的 在针对今天的计算机辅助充型模拟软件包能准确地预测任何部分充填模式环境中。这允许快速模拟实习,帮助找到模具的最佳位置。工程师可以在电脑上执行成型试验前完成零件设计。工程师可以预测过程系统设计和加工窗口,并能获得信息累积所带来的影响,如部分过程变量影响性能、成本、外观等。2、注射成型法 注塑成型是最有效的方法之一,将塑料最好的一面呈现。这是普遍用于制造复杂的制件,优点是简单、经济、准确与少浪费。塑料零件的批量生产主要采用模具。产品设计制造过程包括模具的结构必须经过外观评价和结构优化。当设计师创造注射模具组件时,他们面临一个巨大的多种选择,并行工程需要一个工程师考虑制产品在发展阶段时的过程设计。一个好的产品设计为了满足市场其制造过程是不可能太贵的。CAD/CAM整合了过程仿真、快速成形制造能减少风险,进一步提高产品开发的有效性。3、注塑模具设计重要的计算机辅助 注射模具设计任务是相当复杂的。计算机辅助工程(CAE)分析工具提供了巨大的优势让设计工程师考虑几乎所有模具、注塑参数没有真正利用的地方。在可能性的设计、理念设计师,给工程师们机会去消除潜在的问题,开始真正的生产。此外,在虚拟环境中,设计师可以快速而方便地评估特定的成型参数敏感性的质量和生产最终产品。所有这些分析工具使所有模具设计将在一天甚至数小时完成,而不需要几周或几个月来做真正的实验反复试验。CAE用于早期设计的部分,模具和注塑模具参数、节约成本是实质功能不仅是最好的部分,而且还能节省和缩短开发产品推向市场的时间。 在所有方面的成型过程中需要满足塑料部分设置的公差,包括零件的尺寸和形状,树脂的化学结构、填料使用,模具型腔布置、浇注、模具冷却并释放机制使用。面对这复杂性,设计师经常使用电脑设计工具,如有限元分析(FEA)和充型分析(MFA),减少开发时间和成本。有限元分析确定部分结构的应变、应力和挠度,在那里这些参数可以很好地被定义。冲型分析位置和大小进行优化树脂流动。它还定义了焊缝的位置、面积过大的压力,以及如何影响墙壁和肋厚度流动。其它有限元分析设计工具包括模具冷却温度分布,分析周期时间和收缩为空间控制和预测冻结应力、翘曲变形等情况。 采用CAE分析部分压缩模如图1所示。分析周期始于创造一个CAD模型和有限元网格的模具腔。在注入条件规定,充型、纤维取向、固化和热历史、收缩和翘曲变形等情况进行仿真。该材料的性能计算模型模拟可用于结构的行为的一部分。如果需要部分设计浇口位置及加工条件可以在电脑上修改,直到一个可接受的零件的表达式。摘要分析了一个优化完成部分可采用降低weldline(亦即也knitline),优化力量、控制温度和固化、最小收缩和翘曲变形等情况。 模具加工的前身是手工制作,如检查每一剪机床维修工。自动化的增长和普遍使用的电脑数值控制或CNC加
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。