资源目录
压缩包内文档预览:
编号:207900694
类型:共享资源
大小:2.34MB
格式:ZIP
上传时间:2022-04-13
上传人:机****料
认证信息
个人认证
高**(实名认证)
河南
IP属地:河南
50
积分
- 关 键 词:
-
全自动
洗衣机
传动系统
设计
- 资源描述:
-
波轮全自动洗衣机传动系统的设计,全自动,洗衣机,传动系统,设计
- 内容简介:
-
外文文献翻译New Steering Mechanism for Wheeled Mobile Robots Siaibe Marie Bernard, FU Yi-li, XU He, MA Yu-lin(School of Mechanical and Electrical Engineering, Center of Advanced Manufacturing Technology,Harbin Institute of Technology Harbin 150001,China,Email:sidibebernardyaho.Fr)Abstract:A new castor wheel mechanism for Omni-directional mobile platform is presented. A motion of translation is transformed into a rotation to steer the wheel with the help of a helical path fits into a translation joint and three rollers whose axes are connected to the driving shaft of the wheel. When the path moves in translation it acts on the rollers for steering. The path-roller friction transmission. The wheel kinematics and the maneuverability have been analyzed.Key words:castor wheel;helical path;friction;roller;maneuverability;mobilityCLC number:TP24 Document code:A Article ID:l0o5-9l13(2007)02-0184-05Mobile platform has attracted various researches in robotic applications such as wheelchair,car-like-robotetc.Different categories of Omni-directional mobile platform s have been presented significantly over the last 20 years. Their mechanical structures are mainly differentiated and characterized by the wheel echanisms.which determine their mobility【1】.It has been shown that only robots equipped with three castor wheels or three universal wheels have fu儿mobility (homonymic and mni-directional)【5】.The universal wheels present several drawbacks such as low load capacity-Periodical bump leading to a vibration【8】.Their mechanism is usually complex ,with many parts increasing the weight of the mobile platform. The three castor-Wheeled mobile robot main drawbacks is that it needs at least four actuators (three for steering and at least one for drive).Some examples exist with six actuators, three driving and three steering actuators .This phenomenon leads to some singularities in control. But it has the advantage of carrying important load9 .Up to now new researches are going on castor wheeled mobile robot【2.3】 , and most of mobile robots for manipulation have only conventional wheel9,The interest of our research consists of a design of new type of castor wheel mechanism with a connection of elementary joints (spin, linear and screw joints).The interest of our work is the improvement of the maneuverability.For that we have shown in Section 4 that an elementary linear displacement of the joint can produce an important steering angle of the wheel because the steering angle of our mechanism depends on the linear displacement of a joint. The kinematics is given in Section 2.1 Wheel Architecture1.1 DescriptionThe computer model is represented in Figs.13 represent the kinematical chain of the wheel mechanism. It has 3 rollers (Fig.2) able to rotate freely about their axis. Each of them has a free revolute joint with a shaft. The three shafts are built in to each other and fit to the wheel shaft and the revolute joint4 (Figs.1 and 3)So the ensemble of this connection constitutes the wheel link (wheel suspension) which can turn about the vertical axe passing trough the centers of joints 1,3 and 4 (Fig.3).The shaft divided into two different forms:cylindrical form at one side and prismatic at another one (Fig.1).At the down side is a cylinder forming with the wheel link a revolute joint(joint4) and the upper side is prismatic built in the platform and forming with the cylinder of the helical path a translation joint1.The aim of the latest cited is to provide a translation motion to the helical path rea1ized around a cylinder(Fig.1,part with gold color)。1.2 Kinematics DescriptionThe kinematics representation of the mechanism is in Fig.3.In fact. the helical path and rollers connection can be considered as a screw joint. The path is a screw constrained in rotation about vertical axis by joint l and the rollers consist of a nut constrained in translation about the same axle by joint 4.Joint1 is actuated in translation. When it moves the path acts on the rollers. At their turn, animating by a rotation about the vertical axe. They react on the wheel link and finally on the wheel.The eccentricity e and the height h remain constant whatever the posture of the platform. The use of rollers rolling without slipping inside the path is important to avoid coulomb friction even if they make the mechanism little bulky.2 Path-roller FrictionLet us consider a cylinder in a coordinate system (o X, Y, z) and free of rotation about its axle (Fig.4 (a).The cylinder and its axle ale free to rotate about and a vertical ax le distant of R from the wheel. An inclined plan with angle 6 is in contact with the cylinder. When the plan translates with respect to axis .The contact line (cylinderplan) moves with respect to axis Y and the cylinder rotates of angle about the vertical axle. This angle corresponds to the rotation angle of the contact line.These different motions can be expressed as followWhere displacement of the plan with respect to axis z and Y is is the linear displacement of the contact point with respect to axis Y.The linear displacement of R the cylinder is equivalent to y. Then Eq.(1) BecomesThe parameters of a screw (Fig.4(b) are:the diameter 2R the thread inclination 6 and the pitch P.They are related byFinally the relation between the steering and the displacement of the translation joint by a combination of Eq.(2) and (3) Eq.(4)relates the linear displacement of the prismatic joint of the helical path to the steering angle of the wheel.3 KinematicsThe kinematics of wheeled mobile robot can be found in Refs67.In this section we have added to these results the changes required by our mechanism.In Fig.5,OXY and P XI Y1 represent the world coordinate and the robot coordinate .The robot posture is defined in the world coordinate by:x ,Y and .X, Y are the coordinate of the point P and 0 is the robot orientationThe rotation matrix expressing the orientation of OXY with respect to the platform frame PX1Y1 is given byWheel parameters are:e is the eccentricity of the whee1 .It represents the distance between the centers of the wheel B the rotation axe passing by point A of the platform. l and a are the polar coordinates of A with respect to PXIY1(Fig.5).The wheel radius is defined by r is and P is the pitch helical path of wheel mechanism. Wheel variables are and.The posture of the translation joint is represented by z of wheel I with respect to axis (Fig.3). Represents the rotation angle of the wheel I about an axis passing by the wheel center B.The kinematics constraints of a traditional castor wheel are obtained by the projection of the velocities of the robot and the wheel into the wheel plan and in a plane perpendicular to the wheel plane. They are The constraints of our presented wheel mechanism are obtained by a combination of Esq.(4) And (7) and then (4) and (8)The last two above equations represent only the constraints of only one wheel. If three of our wheel mechanism is implemented to a mobile robot, the total number of constraints will be six.4 ExamplesIn this section, we consider an example of a typical carlike-robot,I.e.A mobile robot equipped with two Passives fixed standard wheels and one castor wheel of our type and each wheel are distant of Z to the origin P 0f the robot rame(Fig.6).We assume that all of the three wheels have the same radius r and the robot is steered and driving by the castor whee1.W e also assume that the ground is an horizontal plane and there is no sliding or friction between wheels and ground.The fixed standard wheel parameters are represented in Fig.7.As f0r the castor wheel, its kinematics constraints are obtained by projecting of the different velocities in wheel plane and in a plane perpendicular to the wheel plane .They areDue to the arrangement of the three wheels in Fig.6,we have the following values:.With these values a system forming by Eq.(11)(i=1,2 for the two fixed standard wheels)and Eq.(9)(For the castor whee1) can be written asA system forming by Eq(12)(i=1,2)(for the two fixed standard wheels)and Eq.(10)(For the castor wheel) can be written asEq. (13) and (14) represent the robot kinematics constraints. The helical path. This is the steering mechanism, intervenes only during the robot steering process. In this example we consider as in pure rotation process then the components x and y of matrixbecome zero. We also consider that the steering and driving angular velocities of whee1.3 are equal .After some calculations Esq.(13) And (14) becomeBy eliminating 3 in the last 2 equations and using values in Tab.1 we obtain the following relationWhich is represented in Fig.8.All couple (z, P) that vanish Eq. (1 7) will satisfy the assumption, which is considering the robot in pure rotation.5 The Interest of the MechanismGiven two wheeled mobile robots of equal mobility but different maneuverability, the more maneuverable robot will typically be advantageous in cluttered environments. A vehicles maneuverability is characterized by its ability to perform movements that combine multi-Dle degrees of freedom 10.Three castorwheeled mobile robot has good values of degree of mobility (6 =3)and degree of steeribilitybut the maneuverability is closely linked to its design. In theory it is easy to steer a castor wheel straight by an actuator. But during the steering process some frictions occur opposing forces .the torque sometime should be multiplied. A rapid reaction in steering is needed when decision is made to turn. This is maneuverability. These two situations are the reasons why the need of mechanism for steering a castor wheel. In our case, the steering angle is a function of the pitch PFor a fixed displacement of z = 10 mm.Fig.9 shows the values of B for the chose of p during design. The system is more maneuverable for any P mini corresponding to any B maxi.6 ConclusionsSince the beginning of mechanics a lot of simple rolling mechanisms got a castor wheel .In the field of robotic systems it has a particular importance for transportation an exploration .This paper brings a new type of castor drive to this field .In this paper, we have examined the design of a new steering mechanism .Its kinematics and the maneuverability have been analyzed.References:1 Myung-Jin Jung, JonGHwan Kwa.Mobility augmentation of conventional wheeled bases for omni.directional motion.IEEE Transaction on Robotics and Automation.2002.2 DongSun Kim,Wook Hyun Kwon,Hong Sung Park.Geometric kinematics and applications of a mobile robot.International Journal of Control, Automation and Systems,2003:15986446.3 Haoyong Yu,Steven Dubonsky,Adam Skwersky.Omnidirectional mobility using active split offset castors.ASME(American Society of Mechanical Enneers),2004.4 Ferriere L,Campion G,Raucent B.ROLLMOBS,a new drive system for omnimobile robots.ROBOTICA.2001.5 1 Ferriere L,Raucent B,Campion G.Design of omnimobile robot wheels.Procedings of the 1996 IEEE on Robotics and Automation.1996.6 Campion Guy,Bastin G,DAndaNovel B.Structural properties and classification of kinematic and dynamic models of wheeled mobile robots.IEEE rransactions on Robotics and Automation.1 996.7 Tang C P,Bath R,Krovi V.Decentralized kinematics control of Payload transport by a system of mobile manipulators. Proceeding of IEEE on Robotics and Automation, 2004.8 Fisette P,Ferriere L,Raucent B,et a1.A muhibody approach for modeling universal wheels for mobile robots.Elsevier Mechanism and Machine Theorie,2000,35:329351.9 Fu Yili,He Xu,Wang Shuoguo,et a1.Topological analysis and control on mobile robo t with partially.failed propulsive whee1.Proceedings of 2005 IEEE International Conference on Robotics and Automation(ICRA2005).Barcelona.Spain,2005.新创造的轮式督导机制移动机器人(校机械与电气工程中心,先进制造技术,哈尔滨市技术学院 哈尔滨150001,电子邮箱: sidibebernardyaho.fr )摘要:提出了一种新的蓖麻车轮机制,对全方位移动平台进行了称述.议案的翻译转化轮流掌舵车轮与帮助一个螺旋路径怎样可以成为一个翻译联合和三辊轴连接到动轴的车轮. 当道路的举动,在翻译它的行为,督导辊的运动,对径辊摩擦传动,车轮运动学和可操作性进行了分析。关键词:蓖麻车轮;螺旋路径;摩擦;压路机;机动性;调动性。分类号:文件编号:tp24 ,文章编号: l0o5 - 9113 ( 2007 ) 02-0184-05移动平台吸引了各种研究机器人的应用,如轮椅,汽车类,不同类别的全方向移动平台的铺陈大大超过过去20年.他们的主要机械结构,是有区别的,并用车轮机制。 其中10.1测定其流动性,它已经表明,只有机器人配备3脚轮或三个车轮的普及有富儿流动性(完整和全方位)。普遍轮子,目前一些缺点,如低负荷能力颠簸导致了振动,其机理通常是复杂的,具有许多零件增加重量的移动平台三个蓖麻轮式移动机器人的主要缺点是它至少需要4个驱动器(三位为指导,并至少有一名为驱动器)。一些例子,存在着6个作动器,3名驾驶和3个督导作动,这现象导致一些奇异控制。但这样做的好处是携带重要负荷9,直至现在新的研究正在进行当中蓖麻轮式移动滚装博特等,和大多数的移动机器人操纵的,只有常规轮9 ,有兴趣的,我们的研究包括一个设计的新型蓖麻车轮机制,以连接初等伸缩缝(自旋,线性和螺丝接头) 。本港利益工作,是要提高机动性。 为此,我们已经表明,在第4条中说,一个初等线性位移的联合能产生的一个重要转向角的车轮由于转向角度,对我们的机制依赖于线性位移的联合。一 轮式结构1.1 说明计算机模型为代表的是在图1-3,代表了运动链的车轮机制。它有3个滚子(图2)能够自由地转动自己的轴。他们都拥有一个自由旋转联合轴。这三个轴都内建于对方,适合方向盘轴和旋转轴联合4 (图1和3)。所以就此构成了车轮环线(车轮悬架) ,它可以把垂直斧头及槽中心的关节1,3和4 (图3)。竖井分成两个不同形式:圆柱形式在一边,棱柱形,在另一次(图1)。往下看,一边是圆柱形成与车轮连接在一起,旋转联合(联合4)及上侧是棱柱形,建于平台并形成与缸的螺旋走这条路,翻译联合(联合1) ,该公司最新举的目的是,意识到要提供一个平移运动,以螺旋路径围绕缸(图1 ,部分黄金色)。1.2 运动学描述运动学代表该机制在图3上.事实上螺旋路径和滚筒方面,可以被视为一个螺丝钉关节路径是一个螺丝钉的约束,在旋转垂直轴线上的联合L ,并辊构成一个螺母受限于翻译大约同一轴联合4。联合1是驱动在翻译.当在移动路径与滚筒提议通道法案的时候,经过一关于垂直斧,对轮连接,并最后对轮子上作出反应。偏心E和高度h保持恒定,无论姿态的平台。使用的轧辊,即使他们的机制不是太笨重,重要的是要避免库仑摩擦。二 径辊摩擦让我们考虑一个圆柱坐标系(X , Y , Z )的和自由的旋转约其车轴(图4 ( a ) )。汽缸及轴的自由旋转和车轮垂直。倾斜计划与角六是在接触调节器。当计划转化方面的主轴。接触线(圆柱计划)的动作与轴Y和汽缸旋转的角度对车轴垂直。这个角度对应于旋转角度的接触线。这些不同的运动可以表示为轴Z和Y是线性位移的接触点,R取代柱是等于y,式( 1 )变成 参数螺丝钉(图4 ( b ) )有:直径为2 r把螺纹倾角6和沥调子P是相关的,由结合式( 2 )及( 3 )最后可得三 运动学在参67,可以发现,轮式移动机器人的运动学。在本节中,我们已经将所需要的机制加入到这些结果的变化。在图5 ,OXY和Px1y1代表世界坐标与机器人坐标。机器人的态度将在世界坐标:X , Y ,及中定义。图中X , Y是坐标点, P和0是机器人方向。转动矩阵,表示OXY的关于从PX1Y1站台结构得到方向车轮的参数是:车轮的偏心是E,它代表着它们之间的距离为中心的车轮b和由A点的平台之间的距离。 L与a是极坐标pxiy1 (图5)中的参数。车轮半径是指由R是与P是螺距螺旋路径车轮机制。轮式变数和。连接处被代表经过关于轴轮子i的z(Fig.3).三个代表旋转角度的方向盘I关于一个轴途经车轮中心B 。传统运动学限制了的蓖麻轮推算的速度,机器人和轮式到车轮计划,并在一个平面垂直于车轮飞机,他们是我们提出了车轮机制的局限,得到了由多种方法,由(4)及(7) ,然后再由(4)及(8)过去两年以上方程只代表制约,只有一个车轮,如果我们轮子机械装置的三被向一活动的,是实施以移动机器人,其总的约束是6。四 举例在本节中,我们考虑的一个例子,一个典型的汽车式机器人, i.e. a移动机器人配备有两个无源定额标准车轮和一个车轮蓖麻我们的类型和每个车轮都是遥远的Z为由来取消p的,该机器人框(图6 ),我们假设所有的三个车轮有相同的半径R和机器人是带领和驾驶由蓖麻车轮 。瓦特e还以为地面是一个水平面,并有没有滑动或摩擦之间的车轮和地面。 定额标准车轮参数代表图7.就像蓖麻车轮,它的运动学约束得到投射的不同速度在砂轮机,并在一个平面垂直车轮飞机,他们是由于安排的三个车轮图6,我们有以下几点值为:,这些价值体系,形成由式( 11 ) (I = 1,2为两个固定的标准车轮)和式( 9 ) (为蓖麻车轮 ) ,可以写一个制度的形成是由式(12) (I = 1,2 ), (为两个固定的标准车轮)和式(10)(为蓖麻车轮)可以写式(13)及(14)代表机器人运动学约束螺旋路径。这督导机制的介入,只有在机器人的转向过程,在这个例子中,我们认为在纯旋转过程中,然后组成X和Y的矩阵变成零,我们也认为,督导及车轮驾驶角速度3都是平等。经过一番计算,式(13)和(14)成为通过消除3 ,在过去2方程,并用价值观tab.1我们得到如下关系由图8(z , p)可知,消去式(1 7)将符合假设,这是考虑到机器人的纯旋转。五 利益机制鉴于两轮式移动机器人的平等流动,但不同的可操作性,更便于操作的机器人通常会带来好处,在杂乱的环境中。车辆的机动性,其特点是有能力执行动作结合起来。蓖麻轮式移动机器人具有良好的价值观念一定程度的流动性(6 = 3)和自由程度 但可操作性是紧密相连的,其设计在理论上是容易引导对待车轮直由一个致动器,但在督导过程中存在一些因摩擦而发生的抗力,扭矩在一段时间里成倍增加。快速反应,在转向时,是需要做出决定,这是机动性,这两种情况的原因是 在必要的机制下,我们可以督导车轮的一个功能调子p的转向角度,一个固定位移的Z = 10 mm.fig.9显示值B为选择
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。