Φ600液压翻倒卸料离心机设计【含5张CAD图纸文件】
收藏
资源目录
压缩包内文档预览:(预览前20页/共54页)
编号:208299477
类型:共享资源
大小:863.41KB
格式:ZIP
上传时间:2022-04-17
上传人:机****料
认证信息
个人认证
高**(实名认证)
河南
IP属地:河南
50
积分
- 关 键 词:
-
含5张CAD图纸文件
600
液压
翻倒
卸料
离心机
设计
CAD
图纸
文件
- 资源描述:
-
Φ600液压翻倒卸料离心机设计【含5张CAD图纸文件】,含5张CAD图纸文件,600,液压,翻倒,卸料,离心机,设计,CAD,图纸,文件
- 内容简介:
-
前 言离心机的发展有着悠久的历史,早在19世纪30年代在德国便问世了第一台离心机。在随后的时间里,离心机的技术发展获得了很大的进步,结构越来越紧凑,体积越来越小,分离效率不但提高等优点,使其在生产过程中得到广泛应用。离心机可以得到含湿量较低的固相和高纯度的液相,节省大量劳动时间和精力,减轻劳动强度,改善工作条件,提高工作效率,还具有连续运转,自动遥控,操作可靠安全,占地面积小等优点,很受欢迎。它的工作原理是以用转鼓旋转产生离心惯力,实现悬浊液,乳浊液及其它固液混合物料的分离或浓缩。 自动翻到卸料离心机是在三足式离心机的基础上,经过改良设计而成的。它保留了三足式离心机对物料适应性强,分离精度高,运转平稳,做简单等优点。而新增了对翻到架的设计,采用机械反倒卸料的方式,简化了操作过程,降低了劳动强度,提高了工作效率,同时液避免了刮刀卸料会破坏滤网和破坏物料晶粒的缺点。广泛的应用于松散晶体物料的分离脱水及化工,轻工,食品等行业。 摘 要该毕业设计题目是600液压翻倒离心机的设计。在张建伟老师和孟辉波老师悉心指导下,我进行了转鼓壁的厚度计算,拦液板的计算,转鼓底的设计,功率计算和电动机的选择,传动皮带的设计及选择,主轴的设计和强度校核,轴承的选择,翻到架的设计和强度计算,刹车的结构设计和强度计算,翻倒传动部分的设计计算,和其它的一些设计计算。在设计中,我首先要了解到离心机的工作原理:先由控制电路接通带动转鼓转动的电动机,通过皮带的传动使转鼓转动,转鼓转动使物料固液分离,液体通过离心机底部的排液管流出,固体留在转鼓壁上,然后再由控制电路接通翻倒电动机使离心机翻转倒出固体,这样就完成了分离的整个过程,这也是我们设计必须明白的。然后使了解离心机的各个零部件的构造和它们的材料工艺要求。最后对离心机进行整体的评定。关键词: 离心机;转鼓壁;转鼓底;刹车; AbstractThe graduation project entitled 600 hydraulic overturned centrifuge design. I was the drum wall thickness, the board of the bar, the drum at the end of the design, calculation and electrical power of choice, transmission belt of the design and selection, Spindle in the design and strength check, bearing the choice, turn-the design and strength, braking and intensity of the structural design, overturned part of the design of transmission, and a number of other design and calculation. under Zhang Jianwei teacher and Meng Huibo teacher the guidance of well。 In the design, I would first need to understand that the centrifuges working principle: first control circuits connected to the motor rotating drum driven by the belt drive to drum rotation, rotating drum so that materials from solid to liquid, liquid by centrifugal - Ranked at the bottom of the outflow of liquid, solid remain in the drum wall, and then overturned by the motor control circuits connected centrifuges to Dispose of solid turnover, thus completing the separation of the whole process, which is designed to be Understand. And then to the various components of centrifuges to understand the structure and process their materials requirements. Finally, the centrifuges to conduct an overall assessment。Key words :Centrifuges; drum wall; brake;原始数据转鼓直径: 600mm工作转速: 1200r/min物料密度: 1.0510kg/m启动时间: 60120s固液比 : 1:1沈阳化工大学毕业设计 目 录目 录第一章 离心机转鼓的壁厚计算与校核 11. 转鼓壁的壁厚计算 12. 档液板的壁厚计算 2 第二章 功率计算 31. 所有回转件的质量、质心及转动惯量计算 32. 功率的计算和选择 7第三章 三角带传动设计计算 9 第四章 主轴的设计计算 111. 主轴的结构设计 112. 主轴的受力分析 123. 主轴的强度计算 134. 轴承的选择设计及寿命校核 155. 主轴临界转速设计 17第五章 翻倒架的强度计算 181. 一些固定件质量、质心的计算 182. 翻倒架的强度计算 213. 右轴的结构设计与强度计算 224. 键的校核 25第六章 刹车论的结构设计与强度计算 261.制动系统的选择 262.带式制动器的强度校核 26第七章 翻倒传动部分的设计计算 27附录一. 321.外语文献 322.外语文献中文翻译 39参考文献 46附录二.致谢 47沈阳化工大学毕业设计 设计计算书第一章 离心机转鼓的强度计算1、转鼓强度计算与校核1、体壁厚的计算转鼓材料:不锈钢(1Cr18Ni9Ti)密度:0=7.9103 Kgm3 离心机转鼓内半径R=600mm转速n=1200 rmin0=7.9103(503.14)29.8=11.15MPa0由筒体自身质量高速旋转引起的环向应力。取鼓壁开孔直径d=6mm,开孔间距t=18mm开孔削弱系数。t孔的轴向或斜向中心距(两者取小值)。d开孔直径。物料的密度。 =2.8K转鼓的填充系数。 K=0.36焊缝系数。 许用应力。 取ns=2.0 nb=3.5机械设计手册一p/1-6(化工机器P7) =100MPa所以取=32、液板壁厚计算拦液板的厚度计算材料同转鼓选用1Cr18Ni9Ti挡液板壁厚按圆锥形转鼓计算P514转鼓材料的密度,kg/m3转鼓材料的许用应力,Pa焊逢系数,按100%探伤 =1=0.134=0.21mm所以取=3机械设计手册第二章 功率计算1所有回转件质量、质心及转动惯量计算1、 拦液板直边段:2拦液板锥形段:离心机原理结构与设计计算P2133转鼓壁:4加强箍:5转鼓:将其分段计算:a.空心圆柱体:b.圆台体: c.圆筒体:d. 圆台体: e. 圆锥块:f. 空心圆台体:g. 圆筒:6总体计算:总质量: 总质心:总转动惯量:2功率的计算与电机的选择1启动转鼓等转动件所需功率N: 考虑其他转动件功率增加58%,取5%2启动物料所需的功率N: 机械工程手册P78-323. 克服轴与轴承摩擦所需的功率N3: 4. 克服转鼓、物料与空气摩擦所需的功率N4: 其中:5. 间歇运转的离心机启动阶段消耗的功率N5 :由三角皮带传动效率:,取离心式摩擦离心器传动效率:,取安全裕量系数:则实际功率:因为离心机启动阶段消耗的功率最大,由此选电动机。选: 额定功率: 4 kw 固定转速为: 1440 r / min 电机型号为: Y112M4 质量:皮带传动的设计与校核皮带及皮带轮的设计计算1、 材料的选择皮带轮选用:铸铁, 0=7.0103kg/m32、 设计步骤(1)设计功率PdPd=KAPKA工况系数, 每天工作大于10小时,载荷变动小KA=1.2P传动功率,kw P=4kwPd=1.24=4.8kw(2)带型根据Pd=4.8kw , n1=1440r/min ,查图1312选用普通V型A带 ,dd1=112140,取dd1=125,dd1小带轮基准直径(3)传动比: i=1.217取0.01 i=1 dd2=125(4)带速V: V=3.141001440/601000=7.31Vmax Vmax=2530(m/s)(5)初定中心距aa0 .7(dd1+dd2)aa2(dd1+dd2) 158a0120o(9)单根V带额定功率P1=2.82 kw机械工程手册第3卷13-8P 表 13-1-15 (10)K包角的修正系数 K=0.99 KL带正修正系数 KL=0.93 P=1.32 ,P=0.09V带根数Z Z=4.8/(1.3+0.09)10.91=3.7 所以Z=4(12)单根V带初张紧力F0=520+mv2=107.84Nm单根V带的质量 m=0.1/m(13)作用在轴上的力Q Q=2F0Zsin=2107.844sin176.7/2=862.36 N(15)带轮宽BB=(Z-1)e+2fZ轮槽数e槽间距,其累积误差不得超过me=15+1.3 fmin=9B=(4-1)15+210=65(16)带轮槽形状尺寸 P13-6bd=11 b13.2hamin=2.75 hfmin=8.7=6带轮的设计:由于V=7.31 m/s20 m/s带轮材料取 HT150(P13-9)=(1.82)d=110L=(1.52)d=90B=(4-1)19+215=106dd2=193d= dd2+ hamin=193+7=200第四章 主轴的设计计算1. 主轴的结构设计1. 选择的材料: 45钢 调质处理 弯曲疲劳极限: 剪切疲劳强度极限: 2. 轴的结构设计:a.拟定轴上零件的装配方案。b.根据轴向定位的要求,确定轴的各段直径和长度。(祥见附图)由表P 表13-1-32. 主轴的受力分析1根据受力列方程: 其中: 代入方程解得: 根据受力图画弯矩图、扭矩图:2.主轴的强度校核(1) 载荷计算总轴向力:P=G物+G鼓+G轮+G轴=60+(10+22.5+21.44)+25.61+6.369.8=1430N偏心载荷:e=D/1000=0.6103mmM= (G物+G鼓)e=(10+22.5+21.44+60)0.61039.8=0.670N.m轴传递扭矩T=95505。5/1500=35n.m转鼓的离心力:Fr=mw2e=(10+22.5+21.44)15720.6103=798N=w/t=15780=1.9625轴的扭矩T=35N.m压轴力:Q=1298NR1+R2+Fr=QQ+105+R1171+M+Fr258.3=0 R1+R2+798=12981298105+ R1171+670+798258.3=0 解得:R1=1983N,R2=2430N根据第四强度理论:Mca = Mca1=139.62 N.m Mca2=80.26N.m1289= R1+R2798-1298105+ R1171=798258.3+670 解得:R1=465N,R2=1631N。经以上计算分析:第一种情况的支坐反力大,所以要按第一种方法计算。(3) 按弯矩合成应力校核强度:W1=/320。0552=0。00006325m3.W2=/320.0452=0.00008941 m3.ca1=M ca1/W2=136.29/0.0000016325=8.34MPaca2= M ca2/W2=80.26/0.000008941=8.9 MPas所以合格。4. 轴承的选择、设计及寿命校核1. 轴承选择:a. 基本尺寸: 50mm 选择轴承型号:46210D=90mm B=20 b. 基本尺寸: 40mm 选择轴承型号:46408D=80mm B=19 2. 确定轴承的径向载荷:已知: 解得: 3. 确定轴承的轴向载荷A1、A2 : (1). 已知转鼓和物料的总质量 126.43 kg FA = mg = 1239.1N(2). 附加轴向力的确定:(3). 轴向力的确定:(4). 计算两轴承的当量载荷:可查得: 载荷系数 .2 查表得: 静载荷安全系数为:(5). 确定轴承寿命:按轴承的受力大小计算寿命系数取 轴承每天工作16h,则轴承工作天数:n=168152.7/16=1050.9(天)所以轴承A、B都合格。5. 主轴临界转速计算1)计算阶梯轴的当量直径dv=37.92mm -经验修正系数 取为1.094 2)临界转速nc1=1688.9r/min1200r/min设计为刚性轴应满足n0.75nc1=0.75*1688.9=1266.7r/minn=1200r/min 所以此轴处于稳定状态。查2P6-33表6-1-402P6-33第五章 翻倒架的设计计算1. 一些固定件的质量、质心计算a 电机: 型号Y112M4 m1 = 43kg电机座:相对鼓底质心位置:b. 离合器:c. 小带轮: d. 大带轮: e. 翻倒架: f. 上机壳:g. 下机壳:h. 轴承支座: i. 轴:j. 法兰:k. 减震器:总质量(不含物料)翻倒架的位置,即未加物料的整个离心机质心2. 翻倒架的强度计算材料: HT200 将翻倒架视为一均布载荷架,承受均布载荷q 如图:整个机器总质量: 弯矩及弯矩图:将整个截面分成三个部分: : : 整个型心坐标:段:A1=2000mm2 x1=50mm Z1=110mm段:A2=1600mm2 x2=10mm Z2=60mm段:A3=1000mm2 x3=25mm Z3=10mm整个型心坐标:抗弯矩:抗弯矩组合由第三强度理论校核: 鼓翻倒架强度满足要求。3. 右轴的结构设计与强度计算1. 结构设计: 材料:45钢 调质处理。2. 轴的受力分析:F图:(N) 1885.78 1885.78M图:(Nm) 540.68T图:(Nm) 286.9计算弯矩: 取: 3. 右轴的静强度安全系数校核:截面: 其中 材料的屈服极限: 静强度安全许用系数=15代入公式:截面: 右轴的静强度符合要求 键的校核键连接的强度验算公式:其中转矩:轴直径:键与轮毂的接触高度:键的工作长度:=0.04mm键连接的许用应力P :所以合格。许用剪切应力: 所以合格。经校核键满足要求。第六章 刹车的结构设计与强度计算1. 制动系统的选择选用带式制动器: D = 400 mm 制动力矩: Mt1 = 1765 Nm制动带宽度: B = 100 mm制动带厚度: = 8 mm2. 带式制动器的强度校核1. 摩擦面的比压校核:制动带的最大拉力:带式制动器的摩擦系数 代入公式:摩擦材料许用比压: 则: 所以摩擦比压符合要求。2. 钢带拉伸应力的校核:强度要求: 被柳钉削弱的最多截面的系数: m = 3钢带连接柳钉孔径: d = 8 mm制动钢带厚度: 3P6-2353P6-2413P6-238 3P6-241材料45钢满足要求。第七章 翻倒传动部分的设计与计算一、液压缸的选择 根据机构运动和机构的要求,选用单杆活塞非差动双作用液压缸。选用液压缸内径D=100mm 缸的材料为45钢 =598Mpa二、液压缸壁厚计算 取额定压力为P=4MPa ,允许最高压力Pmax1.74 4P19-203表19-6-44 P19-212表19-6-12所以可以使用。三、活塞杆的计算1)由于液压缸无速比要求,可根据液压缸的推力和拉力确定,可按下式初步估算选取d值: d=()D=4066.67mm如果活塞杆长小于或等于10倍的缸径D,不能确定速率比,可按下式计算: d= P1液压缸推力N 材料的许用应力N/mm2 =所以:P1=P*A=286.9kN =取n=2查245钢=598MPa所以=598/2=299 MPa 圆整d=38mm2)纵向弯曲轴向应力的计算 当纵向力达到极限力Pk以后缸产生纵向弯曲,出现不稳定现象 Pk-活塞杆弯曲失稳临界压缩力N活塞受到P1完全作用在轴线上按P1验证。P1=286.9kN Pk=E1实际弹性模量 E1=其中a材料组织缺陷系数 b活塞杆横截面不均匀系数4P19-220表19-6-20查24P19-202表19-6-34P19-202表19-6-20a=1/12 b=1/13所以E=2*105I-活塞杆横截面惯性矩。K-液压缸安装及导向系数 P19-222 表19-6-21取K=2LB-液压缸支承长度 LB =14d=2m代如上式E1=1.8*105 I =8.24*10-8m4所以Pk=1635.8kNnk安全系数通常取nK=3.56表19-6-20取nK=5所以=1635.8/5=327.16P1=286.9kN所以满足要求。3)活塞杆的强度计算 活塞杆在稳定工况下,如果只受轴向推力或拉力,可以近似地用直杆承受拉压负载的简单强度计算公式进行计算 = =36.53MPa=299MPa活塞杆一般都没有螺纹、退刀槽等机构,这些部位往往是活塞杆的危险截面也要进行计算,危险截面处的合成应力: =1.8*P2-活塞杆拉力d2-危险截面直径P2=A2P*106= =18419.3N查4P19-220表19-6-20查4P19-204=1.8 =36.84MPa=118.MPa经校核活塞杆强度满足要求。45沈阳化工大学毕业设计 文献附录一:文献BACKGROUND OF THE INVENTIONThis invention relates to a method, apparatus and composition of matter for separating a blood sample by centrifuging into clot portions, so that the serum may be quickly and readily removed without contamination by the clot portion. In recent years, biomedical and hospital laboratories have been faced with increasing demands for more and more routine, as well as specialized, diagnostic tests of blood samples. To meet the demands of these tests equipment has been devised which automatically takes a sample or specimen of blood which has been placed in a cup and subjects it to a series of programmed tests which eventuate in a readout on a record member. While these analyzers have increased the efficiency of performing the necessary tests, a problem has continued in finding ways and means of separating the serum from the clot portion and removing the serum for analysis. Various types of tube and plug devices have been suggested by the prior art. For example, in U.S. Pat. No. 3,512,940, issued May 19, 1970, a device consisting of a tube with a filter at one end thereof is inserted into a second but larger diameter tube containing a sample of the material desired to be filtered. In U.S. Pat. No. 3,508,653, issued Apr. 28, 1970, a piston in the form of a solid plug is driven through a centrifuged blood sample so as to position itself between the serum and clot portions of the centrifuged sample. The tube within the tube concept of U.S. Pat. No. 3,512,940 suffers from the apparent deficiency of being costly and not readily adaptable for disposal after a single use. The plug arrangement of U.S. Pat. No. 3,508,653 has the shortcoming of utilizing a solid plug member which when subjected to a substantial centrifugal force, may also develop radial forces acting against the side of the sample tube, thus creating the danger of breakage. SUMMARY OF THE INVENTION The present invention provides a method by which the serum and clot portions of the blood sample are separated quickly and effectively by use of a simple device containing a liquid sealant consisting essentially of a silicone fluid and silica. The sealant has a specific gravity of at least 1.026 and preferably in the range of 1.030 to 1.050. As such, it will normally be at the proper specific gravity to divide the serum and clot portions of the centrifuged sample, sealing the clot in the container while the serum is removed. Accordingly, it is an object of the present invention to provide a simple and effective method of obtaining a serum sample during centrifuging. DESCRIPTION OF THE DRAWINGS FIG. 1 is an exploded partially sectional view of a sample tube and dispenser to carry out the process of the present invention; FIG. 2 is a partially sectional side view of a sample tube and dispenser to carry out the process of the present invention with the dispenser inserted into a supply of blood; FIG. 3 is a partially sectional view similar to that of FIG. 2 wherein the blood, sample tube and dispenser have been partially subjected to centrifuging; FIG. 4 is a view similar to FIG. 2 wherein the blood, the sample tube and dispenser have been subjected to the complete centrifuging step; FIG. 5 is a sectional view of the sample tube with the separator in place overlying the clot portion with the serum portion removed; FIG. 6 is an enlarged sectional view of the sealant dispenser showing the sealant contained therein; FIG. 7 is a top view of the dispenser of FIG. 6; and FIG. 8 is a bottom view of the dispenser of FIG. 6. DESCRIPTION OF THE ILLUSTRATED EMBODIMENT Referring to the drawings, a container 10 for holding a blood sample is illustrated as a straight side wall sample tube 10 with an open top end 11. Into the open top 11 is inserted a dispenser 12. The dispenser 12 has a flange member 14 which overlies the top edge 16 of the side wall 18 of the container. The dispenser 12 includes a body portion 19 consisting of three ring sections 20, 22 and 24. Extending from the body 19 is an elongated nozzle portion 26 and at the end of the nozzle 26 is a tip 28 having an opening 30 therein. The purpose of the three rings 20, 22 and 24 is to permit the dispenser 12 to be used with containers of various diameters. Ring 20 has a shoulder 32 and a side wall 33, ring 22 a shoulder 34 and a side wall 35, and ring 24 has a shoulder 36 and a side wall 37. When using a narrow container, the dispenser bears on the top edge of the side wall of the container at one of the shoulders 32, 34 or 36 and the side wall of the next smaller ring is parallel with the inner side wall of the container. During centrifuging the relationship between the inner surface of the container and the side wall of the ring insures stability of the dispenser during this period. By utilizing a dispenser as illustrated herein, it is possible to use one dispenser for varying diameter containers. The body portion 19 of the dispenser has an open end 37 over which is placed a seal 38. The seal 38 has a small opening 40 therein. The seal 38 is not placed over the open end until a sealant 42 has been placed in the dispenser. The sealant 42 consists essentially of a silicone fluid with an inert filler, such as silica, dispersed therein. The sealant should have a specific gravity of at least 1.026 and preferably in the range of 1.030 to 1.050. The normal specific gravity of blood as determined by the pycnometric method is considered to be in the range of 1.048 to 1.066 with averages of 1.052 to 1.063. After centrifuging the specific gravity of the blood serum which separates from the remainder of the blood is at least 1.026 and in the range of 1.026 to 1.031. The specific gravity of the heavier portions such as the erythrocytes is 1.092 to 1.095. In selecting a sealant it is necessary to select one which has a specific gravity greater than that of the serum portion. Accordingly, the sealant should have a specific gravity of at least 1.026. However, its specific gravity should not be too high so as to cause it to layer somewhere in the clot portion. Such layering would be of no practical use towards obtaining a separated serum portion. A preferred sealant would have a specific gravity in the range of 1.030 to 1.050. The sealant is also preferably thioxtropic, water insoluble, substantially non-toxic as well as substantially chemically inert with respect to the constituents of the blood sample, particularly those in the serum portion. A preferred sealant formulation is as follows: EXAMPLE I Parts by weight Silicone fluid (dimethylpolysiloxane) 100 Silica (specific gravity 2.65) 8 Silica (specific gravity 2.3) 6 The silicone fluid used in Example I was a dimethyl-polysiloxane polymer made by Union Carbide Corporation and identified by the designation L-45. It had a viscosity of 12,500 centistokes and a specific gravity of about 0.973 at 25.degree.C. The silica with a specific gravity of 2.65 was an amorphous silica having a particle size of at least 75 percent being less than 5.0 microns. It was made by Whittaker, Clark & Daniels and identified by the designation No. 31 Lo Micron. The silica with a specific gravity of 2.3 was a hydrophobic amorphous silica having an average particle size of about 20 millimicrons. It was made by Degussa Inc. and identified by the designation Aerosil R 972. The silicone fluid and the silica were mixed together to a thixotropic condition with a resultant specific gravity of 1.045 to 1.050 to form the sealant. The sealant was then placed in a dispenser of the type illustrated in FIG. 6 in particular. The diameter of the flange was 0.70 inches and the overall length 1.75 inches with the nozzle and tip being 1.10 inches. The opening in the tip was 0.032 inches. The filled dispenser was placed in a standard sample tube having an overall length of 3.875 inches with the shoulder 32 of the first ring resting on the top of the tube side wall. The tube had previously been filled with a whole blood specimen to within 1.10 inches of the open end of the tube. The extent of the dispenser from shoulder 32 to the end of the tip was 1.5 inches. Thus, the dispenser tip and part of the nozzle extended well into the blood sample. The tube with the blood sample and dispenser was centrifuged for approximately 10 minutes. After 5 minutes substantially all of the sealant had passed from the dispenser. The sealant did not disperse but instead remained homogeneous and settled as a layer between the serum and clot portions of the centrifuged blood. It was noted that the sealant settled as a substantially even layer between the two portions since its specific gravity of 1.045 to 1.050 was less than that of the clot portion and greater than that of the serum portion. The sealant formed a tight seal against the inner wall of the tube. Also noted was the fact that the sealant had mixed into it, particularly in the portion near the clot portion, fibrant matter which had been filtered out of the serum portion as the sealant settled to its own specific gravity level. The use of the dispenser which extended into the blood sample expedited the procedure since it was not necessary for the sealant to overcome the surface tension of the blood sample. With the sealant in place it was possible to merely decant off the serum portion with the clot being trapped behind the sealant. The specific gravity of the sealant was determined by using a copper sulfate method. The procedure consists of letting drops of the sealant fall into a graded series of solutions of copper sulfate of known specific gravity and noting whether the drops rise or fall. The series used were graded at 0.005 intervals. Merely by observing the drops it was possible to determine that the sealant had a specific gravity between 1.045 and 1.050. Another sealant formulation is as follows: EXAMPLE II Parts by weight Silicone fluid (dimethylpolysiloxane) 100 Silica (specific gravity 1.95) 14 The silicone fluid of Example II is the same dimethylpolysiloxane polymer of Example I. The silica with a specific gravity of 1.05 has an average particle size of 16 millimicrons. It is made by Henlig & Co. and identified by the designation TRI-SIL 404. The specific gravity is from 1.045 to 1.050. Still another sealant formulation is as follows: EXAMPLE III Parts by weight Silicone fluid (ethyltriethoxysilane) 100 Silica (specific gravity 2.65) 8 Silica (specific gravity 2.3) 20 The silicone fluid of Example II is an ethyl-triethoxysilane monomer made by Union Carbide Corporation and identified by the designation A-15. The silicas are the same as those used in Example I. The filler serves the dual purpose of making the silicone fluid thixotropic and of adjusting the specific gravity to that which is desired for the resultant sealant. In place of silica other inert fillers which may be used in a fine powdered form are bentoniate, alumina and talc. Others will also occur to those skilled in the art. Another silicone fluid which may be used is made by Dow Corning Corporation and identified as 200 Fluid. In selecting silicone fluids and fillers, one should select materials which when mixed together will give the desired specific gravity, be substantially non-toxic, water insoluble and substantially chemically inert with respect to the constituents of at least the serum portion. The dispenser serves to meter out the sealant gradually and this gradual metering provides sufficient lead time for the centrifugation to take effect before the sealant is in place. If the sealant were allowed to be positioned too soon some unwanted matter, such as red cells or fibrilar like material, may be trapped in the serum portion by the sealant. While various examples have been described herein and one embodiment illustrated on the drawings, those skilled in the art may practice the invention in its various forms by other examples and embodiments without departing from the scope of the claims herein. 血清分离方法本发明涉及到一种方法,仪器和合成物分离采集血样离心成血块部分,从而使血清可迅速和容易地删除而不会受到污染的凝结部分。 近年来,生物医学和医院实验室已经面临着日益增加的需求对于越来越多的例子,以及专门的诊断测试的血液样本。为满足这些试验设备已制定的自动样品或标本的血液已放置在世界杯和科目它进行了一系列试验,计划在读归结于创纪录的会员。虽然这些分析仪增加了效率,履行了必要的试验,这个问题一直在寻求各种方式和途径分离血清和消除血凝块部分血清进行分析。各类管和插件设备已经提出的先有技术。例如,在美国帕特。 3512940号,印发1970年5月19号,装置组成的管过滤器在一端有插入第二,但大直径管的样本含有的物质理想的筛选。美国的帕特。 3508653号, 4月28日发出, 1970年,活塞的形式,扎实推动插件通过离心血液样本,以自己的位置之间的血清和血凝块部分离心样品。该管的管内概念的美国帕特。第3512940的明显的不足是昂贵,而不是容易适应的处置后,一次性使用。插件安排美国帕特。编号3508653的缺点是使用了坚硬材料时,受到很大的离心力,也可能发展径向力对一侧的样品管,从而造成断裂的危险。概要发明 本发明所提供的方法是血清和血凝块部分血液样本分离迅速和有效地利用一个简单的装置含有液体密封胶的组成基本上硅油和硅。密封剂的比重至少在1.026和最好的范围1.030到1.050 。因此,它通常会在适当的比重分裂血清和血凝块部分离心样品,密封的容器中的血块,而血清中删除。 因此,它是一个对象本发明提供一种简单而有效的方法获得血清样本在离心。描述图样 1是一个爆炸部分断面鉴于样品管和饮水机进行的过程中本发明;体操。二是部分断面侧视图一个样品管和饮水机进行的过程中与本发明的饮水机插入血液供应;体操。三是部分截面类似无花果。 2 ,其中血液,样品管已部分受到离心;国际联合会。 4期类似体操。 2 ,其中血液,样品管和离心机受到完整的离心步骤;体操。 5是一个截面的样品管与分离器在部分覆血栓与血清部分拆除;体操。6是扩大截面的密封胶密封胶机显示所载;体操。 7是最鉴于离心中心。附带说明描述 在谈到图样,一个集装箱10举行的血液样本显示了作为一个连续侧墙样品管与一个开放的10高端11 。公开前11插入配药12 。喷雾器12法兰会员14 overlies顶部边缘16侧墙18集装箱。喷雾器12个,包括19个机构组成部分的三个环第20 ,第22和第24 。从19日的身体是一个细长的喷嘴部分26和结束时的喷嘴26日是一个提示28日开幕30日在那里。的目的,这三个20环, 22日和24日是允许机12可用于各种容器的直径。环20肩膀32和33侧墙,戒指22肩膀34和侧墙35 ,和24环的肩膀36和侧墙37 。当使用一个狭窄的容器中,饮水机熊的顶部边缘的侧壁上的集装箱之一的肩上32 , 34或36和侧墙下一小环与内侧壁的容器。在离心之间的关系,内表面的容器和侧壁的环保证稳定的饮水机,在此期间。 通过利用此机可以看出,可以用一个饮水机不同直径容器。正文部分19饮水机已
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。