




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、比例解行程问题知识框架比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用来表示,大体可分为以下两种情况:1. 当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。,这里因为时间相同
2、,即,所以由得到,甲乙在同一段时间t内的路程之比等于速度比2. 当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之比等于他们速度的反比。,这里因为路程相同,即,由得,甲乙在同一段路程s上的时间之比等于速度比的反比。例题精讲【例 1】 甲、乙两车往返于A,B两地之间。甲车去时的速度为60千米时,返回时的速度为40千米时;乙车往返的速度都是50千米时。求甲、乙两车往返一次所用时间的比。【考点】行程问题之比例解行程 【难度】2星 【题型】解答 【解析】 2524。提示:设A,B两地相距600千米。【答案】2524【巩固】 一段路程分为上坡、平路、下坡三段,各段路程的
3、长度之比是123,某人走这三段路所用的时间之比是456。已知他上坡时每小时行2.5千米,路程全长为20千米。此人走完全程需多长时间?【考点】行程问题之比例解行程 【难度】2星 【题型】解答 【解析】 5时。提示:先求出上坡的路程和所用时间。【答案】5时【例 2】 甲、乙两车从相距330千米的A、B两城相向而行,甲车先从A城出发,过一段时间后,乙车才从B城出发,并且甲车的速度是乙车速度的。当两车相遇时,甲车比乙车多行驶了30千米,则甲车开出 千米,乙车才出发。【考点】行程问题之比例解行程 【难度】2星 【题型】解答 【解析】 两车相遇时共行驶330千米,但是甲多行30千米,可以求出两车分别行驶的
4、路程,可得甲车行驶180千米,乙车行驶150千米,由甲车速度是乙车速度的可以知道,当乙车行驶150千米的时候,甲车实际只行驶了千米,那么可以知道在乙车出发之前,甲车已经行驶了180-125=55千米。【答案】55千米【巩固】 甲乙两车分别从A、B两地同时相向开出,甲车的速度是50千米/时,乙车的速度是40千米/时,当甲车驶过A、B距离的多50千米时,与乙车相遇.A、B两地相距_千米。【考点】行程问题之比例解行程 【难度】2星 【题型】解答 【解析】 AB距离的多50千米即是AB距离的,所以50千米的距离相当于全程的,全程的距离为(千米).【答案】千米【例 3】 甲乙两地相距12千米,上午10:
5、45一位乘客乘出租车从甲地出发前往乙地,途中,乘客问司机距乙地还有多远,司机看了计程表后告诉乘客:已走路程的加上未走路程的2倍,恰好等于已走的路程,又知出租车的速度是30千米/小时,那么现在的时间是 。【考点】行程问题之比例解行程 【难度】2星 【题型】解答 【解析】 可设已走路程为X千米,未走路程为(12-X)千米。列式为:X-X=(12-X)×2 解得:X=9 分钟,现在时间是 【答案】【巩固】 欢欢和贝贝是同班同学,并且住在同一栋楼里早晨 7 : 40 ,欢欢从家出发骑车去学校, 7 : 46 追上了一直匀速步行的贝贝;看到身穿校服的贝贝才想起学校的通知,欢欢立即调头,并将速度
6、提高到原来的 2倍,回家换好校服,再赶往学校;欢欢 8 : 00赶到学校时,贝贝也恰好到学校如果欢欢在家换校服用去 6分钟且调头时间不计,那么贝贝从家里出发时是几点几分【考点】行程问题之比例解行程 【难度】3星 【题型】解答 【解析】 欢欢从出发到追上贝贝用了 6分钟,她调头后速度提高到原来的 2倍,根据路程一定,时间比等于速度的反比,她回到家所用的时间为 3 分钟,换衣服用时 6 分钟,所以她再从家里出发到到达学校用了 20- 6-3- 6 =5分钟,故她以原速度到达学校需要 10 分钟,最开始她追上贝贝用了 6分钟,还剩下 4 分钟的路程,而这 4 分钟的路程贝贝走了 14 分钟,所以欢欢
7、的 6 分钟路程贝贝要走 14 ×(6÷ 4)= 21分钟,也就是说欢欢追上贝贝时贝贝已走了 21 分钟,所以贝贝是 7 点 25 分出发的【答案】7 点 25 分【例 4】 明明每天早上7:00从家出发上学,7:30到校。有一天,明明6:50就从家出发,他想:“我今天出门早,可以走慢点。”于是他每分钟比平常少走lO米,结果他到校时比往常迟到了5分钟。明明家离学校_米。【考点】行程问题之比例解行程 【难度】2星 【题型】填空 【解析】 平时明明用30分钟,今天用了45分钟,时间比为2:3,则速度比为3:2,那么可知平时速度为30米/分钟,所以明明家离学校900米。、【答案】
8、900米【巩固】 甲、乙、丙三辆车先后从A地开往B地,乙比丙晚出发5分,出发后45分追上丙;甲比乙晚出发15分,出发后1时追上丙。甲出发后多长时间追上乙?【考点】行程问题之比例解行程 【难度】2星 【题型】解答 【解析】 75分。提示:行驶相同路程所需时间之比为:,。【答案】75分【例 5】 大、小客车从甲、乙两地同时相向开出,大、小客车的速度比为45,两车开出后60分相遇,并继续前进。问:大客车比小客车晚多少分到达目的地?【考点】行程问题之比例解行程 【难度】2星 【题型】解答 【解析】 27分。解:大客车还需(分)、小客车还需(分)。大客车比小客车晚到(分)【答案】27分【巩固】 甲、乙分
9、别从A,B两地同时相向出发。相遇时,甲、乙所行的路程比是ab。从相遇算起,甲到达B地与乙到达A地所用的时间比是多少?【考点】行程问题之比例解行程 【难度】2星 【题型】解答 【解析】 b2a2。解:因为甲、乙的速度比是ab,所以相遇后甲、乙还要行的路程比是ba,还要用的时间比是(b÷a)(a÷b)b2:a2。【答案】b2a2【例 6】 甲、乙两辆车分别同时从 A, B两地相向而行,相遇后甲又经过15分到达B地,乙又经过1时到达A地,甲车速度是乙车速度的几倍?【考点】行程问题之比例解行程 【难度】2星 【题型】解答 【解析】 2倍。解: 60152212,所以甲车速度是乙车的
10、2倍。【答案】2倍【巩固】 A,B两地相距1800米,甲、乙二人分别从A,B两地同时出发,相向而行。相遇后甲又走了8分到达B地,乙又走了18分到达A地。甲、乙二人每分钟各走多少米?【考点】行程问题之比例解行程 【难度】2星 【题型】解答 【解析】 每分甲走90米,乙走60米。解: 1883222,所以甲的速度是乙的3÷21.5(倍)。相遇时乙走了1800÷(11.5)720(米)。推知,甲每分走720÷890(米),乙每分走90÷1.560(米)。【答案】60米【例 7】 甲、乙两人同时从 A、 B 两点出发,甲每分钟行 80米,乙每分钟行 60米,出发
11、一段时间后,两人在 C 处相遇;如果甲出发后在途中某地停留了 7分钟,两人将在 D 处相遇,且中点距 C 、 D 距离相等,问 A、 B 两点相距多少米?【考点】行程问题之比例解行程 【难度】3星 【题型】解答 【解析】 甲、乙两人速度比为,相遇的时候时间相等,路程比等于速度之比,相遇时甲走了全程的,乙走了全程的第二次甲停留,乙没有停留,且前后两次相遇地点距离中点相等,所以第二次乙行了全程的,甲行了全程的由于甲、乙速度比为 4 : 3,根据时间一定,路程比等于速度之比,所以甲行走期间乙走了,所以甲停留期间乙行了,所以 A、B 两点的距离为 (米)【答案】米【巩固】 如图3,甲、乙二人分别在A、
12、B两地同时相向而行,于E处相遇后,甲继续向B地行走,乙则休息了14分钟,再继续向A地行走。甲和乙到达B和A后立即折返,仍在E处相遇,已知甲分钟行走60米,乙每分钟行走80米,则A和B两地相()米。图3【考点】行程问题之比例解行程 【难度】3星 【题型】解答【解析】 1680米【答案】米【例 8】 甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇求A、B两地间的距离?【考点】行程问题之比例解行程 【难度】2星 【题型】解答 【解析】 画线段示意图(实线表示甲车行进的路线,虚线表示乙车行进的路线):可以发现第一次
13、相遇意味着两车行了一个A、B两地间距离,第二次相遇意味着两车共行了三个A、B两地间的距离当甲、乙两车共行了一个A、B两地间的距离时,甲车行了95千米,当它们共行三个A、B两地间的距离时,甲车就行了3个95千米,即95×3=285(千米),而这285千米比一个A、B两地间的距离多25千米,可得:95×3-25=285-25=260(千米)【答案】260千米【巩固】 地铁有 A,B 两站,甲、乙二人都要在两站间往返行走.两人分别从 A,B 两站同时出发,他们第一次相遇时距 A 站 800 米,第二次相遇时距 B 站 500 米.问:两站相距多远? 【考点】行程问题之比例解行程
14、【难度】2星 【题型】解答 【解析】 从起点到第一次迎面相遇地点,两人共同完成 1 个全长,从起点到第二次迎面相遇地点,两人共同完成 3 个全长,一个全程中甲走 1 段 800 米,3 个全程甲走的路程为 3 段 800 米. 画图可知,由 3 倍关系得到:A,B 两站的距离为 800×3500=1900 米 【答案】1900 米【例 9】 如右图,A,B 是圆的直径的两端,甲在 A 点,乙在 B 点同时出发反向而行,两人在 C 点第一次相遇,在 D 点第二次相遇.已知 C 离 A 有 80 米,D 离 B 有 60 米,求这个圆的周长. 【考点】行程问题之比例解行程 【难度】2星
15、【题型】解答 【解析】 根据总结可知,第二次相遇时,乙一共走了 80×3=240 米,两人的总路程和为一周半,又甲所走路程比一周少 60 米,说明乙的路程比半周多 60 米,那么圆形场地的半周长为 240-60=180 米,周长为 180×2=360 米. 【答案】360 米【巩固】 甲、乙两车同时从 A地出发,不停地往返行驶于 A、B 两地之间已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中 C 地甲车的速度是乙车速度的多少倍?【考点】行程问题之比例解行程 【难度】2星 【题型】解答 【解析】 第一次相遇时两车合走了两个全程,而乙车走了 AC 这一段路;第
16、二次相遇两车又合走了两个全程,而乙车走了从 C 地到 B 地再到 C 地,也就是 2 个 BC 段由于两次的总行程相等,所以每次乙车走的路程也相等,所以 AC 的长等于 2 倍 BC 的长而从第一次相遇到第二次相遇之间,甲车走了 2 个 AC 段,根据时间一定,速度比等于路程的比,甲车、乙车的速度比为 2 AC : 2 BC =2 :1 ,所以甲车的速度是乙车速度的 2 倍【答案】2 倍【例 10】 自行车队出发12分后,通信员骑摩托车去追他们,在距出发地点9千米处追上了自行车队,然后通信员立即返回出发点,到达后又返回去追自行车队,再追上时恰好离出发点18千米。自行车队和摩托车每分各行多少千米
17、?【考点】行程问题之比例解行程 【难度】2星 【题型】解答 【解析】 自行车每分行0.5千米,摩托车每分行1.5千米。提示:摩托车在4个相等的时间里走了36千米,自行车在其中三个相等时间里走了9千米,故摩托车的速度是自行车的3倍。自行车出发12分后,摩托车需6分追上,所以摩托车每分行9÷61.5(千米)。【答案】1.5千米【巩固】 B地在A,C两地之间。甲从B地到A地去,甲出发后1时乙从B地出发到C地,乙出发后1时丙突然想起要通知甲、乙一件重要事情,于是从B地出发骑车去追赶甲和乙。已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,为使丙从B地出发到最终赶回B地所用时间最少,丙应当先追
18、甲再返回追乙,还是先追乙再返回追甲?【考点】行程问题之比例解行程 【难度】4星 【题型】解答 【解析】 先追乙。解:若先追甲,甲已走了2时,则追上甲需1时,返回B地又用1时,此时乙已走了3时,再追上乙需1.5时,返回B地再用1.5时。共用5时。若先追乙,乙已走了1时,则追上乙需0.5时,返回B地又用 0.5时,此时甲已走了3时,再追上甲需1.5时,返回B地再用1.5时。共用4时。【答案】4时课堂检测【随练1】 甲、乙两人步行速度之比是32,甲、乙分别由A,B两地同时出发,若相向而行,则1时后相遇。若同向而行,则甲需要多少时间才能追上乙?【考点】行程问题之比例解行程 【难度】2星 【题型】解答
19、【解析】 5时。解:设甲、乙速度分别为3x千米时和2x千米时。由题意可知 A,B两地相距(3x2x)×15x(千米)。追及时间为5x÷(3x2x)=5(时)。【答案】5时【随练2】 一辆货车从甲地往乙地运货,然后空车返回,再继续运货。已知装满货物每时行50千米,空车每时行70千米。不计装卸货物时间,9时往返五次。求甲、乙两地的距离。【考点】行程问题之比例解行程 【难度】2星 【题型】解答 【解析】 52.5千米。解:因为满车与空车的速度比为507057,所以9时中满车行的时间为的时间为(时),两地距离为(千米)。【答案】千米【随练3】 甲、乙两车分别从 A、B 两地出发,在
20、 A、B 之间不断往返行驶,已知甲车的速度是乙车的速度的,并且甲、乙两车第 2007 次相遇(这里特指面对面的相遇)的地点与第 2008 次相遇的地点恰好相距 120 千米,那么,A、B 两地之间的距离等于多少 千米? 【考点】行程问题之比例解行程 【难度】2星 【题型】解答 【解析】 甲、乙速度之比是 3:7,所以我们可以设整个路程为 3+7=10 份,这样一个全程中甲走 3 份,第 2007 次相遇时甲总共走了 3×(2007×2-1)=12039 份,第 2008 次相遇时甲总共走了 3×(2008×2-1)=12045 份,所以总长为 120
21、247;12045-12040-(12040-12039)×10=300 米. 【答案】300 米【随练4】 上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?【考点】行程问题之比例解行程 【难度】3星 【题型】解答 【解析】 画一张简单的示意图:图上可以看出,从爸爸第一次追上到第二次追上,小明走了8-44(千米).而爸爸骑的距离是 4 8 12(千米).这就知道,爸爸骑摩托车的速度是小明骑自行车速度的 12÷43(倍).按照这个倍数
22、计算,小明骑8千米,爸爸可以骑行8×324(千米).但事实上,爸爸少用了8分钟,骑行了41216(千米).少骑行24-168(千米).摩托车的速度是8÷8=1(千米/分),爸爸骑行16千米需要16分钟.881632.所以这时是8点32分。注意:小明第2个4千米,也就是从到的过程中,爸爸一共走12千米,这一点是本题的关键对时间相同或距离相同,但运动速度、方式不同的两种状态,是一大类行程问题的关键本题的解答就巧妙地运用了这一点【答案】8点32分家庭作业作业检测【作业1】 一段路程分为上坡、平路、下坡三段,各段路程的长度之比是235,某人骑车走这三段路所用的时间之比是654。已知
23、他走平路时速度为4.5千米时,全程用了5时。问:全程多少千米?【考点】行程问题之比例解行程 【难度】2星 【题型】解答 【解析】 25千米。提示:先求出走平路所用的时间和路程。【答案】25千米【作业2】 甲、乙两车先后以相同的速度从A站开出,10点整甲车距A站的距离是乙车距A站距离的三倍,10点10分甲车距A站的距离是乙车距A站距离的二倍。问:甲车是何时从A站出发的?【考点】行程问题之比例解行程 【难度】2星 【题型】解答 【解析】 9点30分。提示:因为两车速度相同,故甲、乙两车距A站的距离之比等于甲、乙两车行驶的时间之比。设10点时乙车行驶了x分,用车行驶了3x分,据题意有2(x10)=3x10。【答案】9点30分【作业3】 A、 B 两地相距 7200 米,甲、乙分别从 A, B 两地同时出发,结果在距 B 地 2400 米处相遇如果乙的速度提高到原来的 3倍,那么两人可提前10分钟相遇,则甲的速度是每分钟行多少米?【考点】行程问题之比例解行程 【难度】2星 【题型】解答 【解析】 第一种情况中相遇时乙走了 2400 米,根据时间一定,速度比等于路程之比,最初甲、乙的速度比为 (7200 2400) : 2400 =2 :1,所以第一情况中相遇时甲走了全程的2/3乙的速度提高 3倍后,两人速度比为 2 : 3,根据时间一定,路
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商业数据安全法律援助与处理合同
- 职业技能培训项目合作研发实施协议
- 小产权房居住权分割与共有权变更及租赁合同协议
- 跨界合作授权独家补充协议书
- 跨国合作影视广告制作与全球市场推广服务协议
- 医疗查房车租赁及智能设备维护保养合同
- 游艇码头泊位租赁及船舶租赁与维修保养服务合同
- 共有产权住房离婚份额分割与财产清算协议
- 国际物流货物追踪与客户满意度提升服务合同
- 网络内容审核办公场地租赁及广告位合作合同
- 铁道机车-机车检修运用
- 安全操作规程培训课件
- DL∕T 547-2020 电力系统光纤通信运行管理规程
- 切尔诺贝利核电站事故工程伦理分析
- (无线)门禁系统报价单
- 水电站水利工程施工组织设计毕业论文
- 联想EAP案例分析
- 社会工作介入老年社区教育的探索
- 国开电大-工程数学(本)-工程数学第4次作业-形考答案
- 高考倒计时30天冲刺家长会课件
- 施工项目现金流预算管理培训课件
评论
0/150
提交评论