2.开题报告.doc

儿童智能退热仪设计

收藏

压缩包内文档预览:(预览前20页/共45页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:209452289    类型:共享资源    大小:1.28MB    格式:ZIP    上传时间:2022-04-25 上传人:机械设计Q****6154... IP属地:上海
30
积分
关 键 词:
儿童 智能 退热 设计
资源描述:
儿童智能退热仪设计,儿童,智能,退热,设计
内容简介:
毕业设计附本儿童智能退热仪设计DESIGN OF INTELLIGENT ANTIPYRETIC INSTRUMENT FOR CHILDREN学生姓名葛舟班 级 15机电4学 号20150604422学院名称机电工程学院专业名称机械电子工程指导教师蔺超文2019年5月26日目 录毕业设计(论文)课题申报表1毕 业 设 计(论 文) 任 务 书2毕业设计(论文)开题报告7毕业设计(论文)指导手册10徐州工程学院学生毕业设计(论文)中期汇报表16徐州工程学院学生毕业设计(论文)中期情况检查表17徐州工程学院毕业设计(论文)指导教师评阅表18徐州工程学院毕业设计(论文)评阅教师评阅表19徐州工程学院毕业设计(论文)答辩及综合成绩评定表20外文翻译212毕业设计(论文)课题申报表指导教师蔺超文职称讲师教研室机械电子工程申报课题名称儿童智能退热仪设计课题类型理论研究类 课题来源B.社会生产实践课题简介儿童智能退热仪是一种采用半导体芯片制冷原理而达到降低温度目的的仪器,具有快速有效、热量吸收均匀、持续时间长、温度和时间可控,高烧智能报警等功能。本课题要求采用合理的控制芯片对儿童智能退热仪进行设计。课题要求(包括所具备的条件)1)学生应具备相应的机械电子工程的相关知识、AUTOCAD或PRO/E软件的操作和一定的英语的翻译能力。2)教师提供相关电路图,相关参考书、工具书、设计手册等书目。课题工作量要求1)与课题有关的外文文献翻译不少于4000字;2)设计说明书的字数不少于15000字;3)主要参考文献不少于15篇(包括2篇以上外文文献)。教研室审定意见课题符合教学大纲要求,难度适中,工作量合适;同意作为毕业设计课题。教研室主任签名:学 院审定意见同意 教学院长签名: 31徐州工程学院毕 业 设 计(论 文) 任 务 书 学院(系):机电工程学院专 业:机械电子工程学生姓名:葛舟学 号:20150604422设计(论文)题目:儿童智能退热仪设计DESIGN OF INTELLIGENT ANTIPYRETIC INSTRUMENT FOR CHILDREN起 迄 日 期:2019年 2月 26日 2019年 5月 26日指 导 教 师:蔺超文教研室主任:张建化 发任务书日期: 2019年 3月 4日毕 业 设 计(论 文)任 务 书 1.毕业设计的背景:儿童智能退热仪是一种采用半导体芯片制冷原理而达到降低温度目的的仪器,具有快速有效、热量吸收均匀、持续时间长、温度和时间可控,高烧智能报警等功能。本课题要求采用合理的控制芯片对儿童智能退热仪进行设计。2.毕业设计(论文)的内容和要求:毕业设计的主要内容:根据参数设计一种儿童智能退热仪,降温速度8分钟、冷敷面积120x50mm、控温范围1525、定时时间2-8h、主机净重80g;2、系统要具有良好的穿戴舒适性,能够实现智能定时、智能控温、快速退烧、持续控温、高烧报警、智能语音安慰和音乐播放等功能。毕业设计的要求:1.与课题有关的外文文献翻译不少于5000汉字;2.设计说明书的字数不少于15000字; 3.主要参考文献不少于15篇(包括2篇以上外文文献)3.主要参考文献:1 张毅刚,刘杰.MCS-51单片机原理及应用M.哈尔滨:哈尔滨工业大学出版社,2007.2 熊诗波,黄长艺.机械工程测试技术基础 第3版M.北京:机械工业出版社,2006.06.3 王伯雄,王雪,陈非凡.工程测试技术M.北京:清华大学出版社,2006.01.4 张国雄.测控电路 第4版M.北京:机械工业出版社,2011.04.5 张毅刚.单片机原理及接口技术 C51编程M.北京:人民邮电出版社,2011.08.6 邱宣怀.机械设计M.北京:高等教育出版社,2004.05.7 成大先.机械设计手册 第5卷 第6版M.北京:化学工业出版社,2016.04.8 熊幸明主编.电气控制与PLCM.北京:机械工业出版社,2011.01.9 顾绳谷编著.电机及拖动基础M.北京:机械工业出版社,2007.10康华光.电子技术基础 模拟部分 第4版M.北京:高等教育出版社,1999.06.4.毕业设计(论文)进度计划(以周为单位):第1、2周 理解设计课题各种任务,完成外文翻译,完成开题报告;第3周 查阅资料,熟悉智能退热仪设计流程和设计要求;第4周 对设计方案进行修改,确定设计方案;第5、6周 对智能退热仪进行设计并完善各子系统组成方案;第7、8周 对智能退热仪进行子系统硬件电路设计,传感器与关键元器件选型,完成原理图设计;第9、10周 对智能退热仪各子系统设计进行全面检查与完善;第11、12周 对智能退热仪的软件系统进行设计,修改并完善图纸、编写设计说明书;第13周 根据指导老师的意见定稿说明书,准备答辩。教研室审查意见:同意 室主任签名: 年 月 日学院审查意见:教学院长签名: 年 月 日徐州工程学院 毕业设计(论文)开题报告 课题名称:儿童智能退热仪设计学生姓名:葛舟学号:20150604422指导教师:蔺超文职称:讲师所在学院:机电工程学院专业名称:机械电子工程 日期: 2019 年 3 月 12 日说 明1根据徐州工程学院毕业设计(论文)管理规定,学生必须撰写毕业设计(论文)开题报告,由指导教师签署意见、教研室审查,学院教学院长批准后实施。2开题报告是毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。学生应当在毕业设计(论文)工作前期内完成,开题报告不合格者不得参加答辩。3毕业设计开题报告各项内容要实事求是,逐条认真填写。其中的文字表达要明确、严谨,语言通顺,外来语要同时用原文和中文表达。第一次出现缩写词,须注出全称。4本报告中,由学生本人撰写的对课题和研究工作的分析及描述,没有经过整理归纳,缺乏个人见解仅仅从网上下载材料拼凑而成的开题报告按不合格论。 5课题类型填:工程设计类;理论研究类;应用(实验)研究类;软件设计类;其它。6课题来源填:教师科研;社会生产实践;教学;其它 毕业设计(论文)开题报告课题名称儿童智能退热仪设计课题来源社会生产实践课题类型理论研究类 1选题的背景及意义:儿童智能退热仪是一种采用半导体芯片制冷原理而达到降低温度目的的仪器,具有快速有效、热量吸收均匀、持续时间长、温度和时间可控,高烧智能报警等功能。本课题要求采用合理的控制芯片对儿童智能退热仪进行设计。对待儿童生病发烧,而解决的办法不是药物就是市面上的退热贴,也是我们俗称的物理降温。都知道是药都有三分害,稍微处理不当就会引起安全事件的发生,在首选上还是以物理降温为主,所以提出儿童智能退热仪的设计。2研究内容拟解决的主要问题:1、儿童智能退热仪各子系统组成的组成与完善;2、儿童智能退热仪的子系统硬件电路设计,传感器与关键元器件选型;3、儿童智能退热仪的原理图设计;4、儿童智能退热仪的软件系统设计5、该退热仪需实现智能定时、智能控温、快速退烧、持续控温、高烧报警、智能语音安慰和音乐播放等功能3研究方法技术路线:1、课题准备阶段:主要采用文献法、调查法、网上查资料法对设计题目提出的背景、意义、课题研究的主要内容等进行全面、深入的了解。2、分析设计阶段:先设计并完善各子系统组成,再设计子系统硬件电路,对传感器与关键元器件选型,最后完成原理图设计,对软件系统的设计。3、数据整理阶段:先对计算出的数据进行整理,再对各子系统和软件系统进行全面检查与完善,最后绘制各子系统设计原理图。4、设计结尾阶段:对设计过程中所编写的说明书草稿、绘制的草图进行检查、修改、完善,力求达到内容和格式的完整。4研究的总体安排和进度计划:第1、2周 理解设计课题各种任务,完成外文翻译,完成开题报告;第3周 查阅资料,熟悉智能退热仪设计流程和设计要求;第4周 对设计方案进行修改,确定设计方案;第5、6周 对智能退热仪进行设计并完善各子系统组成方案;第7、8周 对智能退热仪进行子系统硬件电路设计,传感器与关键元器件选型,完成原理图设计;第9、10周 对智能退热仪各子系统设计进行全面检查与完善;第11、12周 对智能退热仪的软件系统进行设计,修改并完善图纸、编写设计说明书;第13周 根据指导老师的意见定稿说明书,准备答辩。5主要参考文献:1.张毅刚.单片机原理及应用.高等教育出版社,2007 2.熊诗波.机械工程测试技术基础(第三版).机械工业出版社,2008年 3.王伯雄.工程测试技术.清华大学出版社,2013年4.张国雄.测控电路(第四版).机械工业出版社.2014年5.张毅刚.单片机原理及接口技术(C51编程).人民邮电出版社,2011年6.邱宣怀.机械设计手册第四版.高等教育出版社,2006年7.成大先.机械设计手册.化工工业出版社,1993年8.熊幸明.电气控制与PLC(第二版).机械工业出版社,2017年 9.顾绳谷.电机及拖动基础(第4版).机械工业出版社,2007年指导教师意见:选题适中,具有一定的社会现实意义,拟采取的研究方法合理,研究的总体安排和进度计划合理。同意开题。 指导教师签名: 年 月 日教研室意见: 通过,同意开题。教研室主任签名: 年 月 日学院意见: 教学院长签名: 年 月 日徐州工程学院毕业设计(论文)指导手册设计(论文)题目: 儿童智能退热仪设计 DESIGN OF INTELLIGENT ANTIPYRETIC INSTRUMENT FOR CHILDREN学生姓名 葛舟 学号 20150604422 年 级 15 专业(全称) 机械电子工程 指导教师 蔺超文 所在学院 机电工程学院 毕业设计(论文)指导记录第一次指导记录: 指导地点 年 月 日第二次指导记录:指导地点 年 月 日第三次指导记录: 指导地点 年 月 日第四次指导记录: 指导地点 年 月 日 第五次指导记录: 指导地点 年 月 日第六次指导记录:指导地点 年 月 日第七次指导记录:指导地点 年 月 日第八次指导记录: 指导地点 年 月 日 第九次指导记录: 指导地点 年 月 日 第十次指导记录: 指导地点 年 月 日 第十一次指导记录: 指导地点 年 月 日 第十二次指导记录: 指导地点 年 月 日 第十三次指导记录: 指导地点 年 月 日 第十四次指导记录: 指导地点 年 月 日 第十五次指导记录: 指导地点 年 月 日 徐州工程学院学生毕业设计(论文)中期汇报表学生姓名葛舟专 业机械电子工程学 号20150604422设计(论文)题目儿童智能退热仪设计毕业设计(论文)前期工作小结2018年12月听取了学校领导、老师对毕业阶段的实习、毕业设计拟写等有关事项的安排,与指导老师就个人毕业设计的方向、实习地点的选择进行了磋商、探讨,最后确定毕业设计的方向是:工程设计类。设计的题目为儿童智能退热仪设计。 在论文撰写期间,我在第1、2周通过调研实习,查阅相关文献,整理收集资料。也明确了课题任务,最终完成开题报告和外文翻译的相关任务。第3、4周,我根据指导老师下发的任务书,对智能退热仪进行子系统硬件电路设计,传感器与关键元器件选型,完成原理图设计。之后的六个周,我继续对智能退热仪的软件系统进行设计,修改并完善图纸、编写设计说明书。指导教师意见签名: 2019 年 4 月 20 日徐州工程学院学生毕业设计(论文)中期情况检查表学院名称:机电工程学院 检查日期:2018 年 4 月 26 日学生姓名葛舟专 业机械电子工程指导教师蔺超文设计(论文)题目儿童智能退热仪设计工作进度情况该生毕业设计进度基本符合于任务书的进度安排,后期需加快进度方可完成毕业设计。是否符合任务书要求进度是能否按期完成任务是工作态度情况(态度、纪律、出勤、主动接受指导等)该生工作态度较为端正,基本能遵守学校的有关规章制度,按照指导教师规定的指导时间出勤,对不会的问题能主动地联系指导教师进行请教,具有查阅文献获取知识的能力,具有一定的分析解决问题的能力,能熟练使用计算机软件,动手能力较强。质量评价(针对已完成的部分)已完成的总体方案基本可行,电路图基本正确,完成了一定的图纸工作量。存在问题和解决办法1. 论文内容:撰写剩余部分,并需要进一步修改完善; 2. 论文格式:文字、标点、图、表等需要按照学校毕业设计规范进行修改; 3. 图纸:电路图抓紧时间完成,图纸需进一步完善; 4. 基础知识需进一步提高,继续完善毕业设计为答辩做好准备。检查人签名教学院长签名 徐州工程学院毕业设计(论文)指导教师评阅表学院: 机电工程学院 专业: 机械电子工程 学生: 葛舟 学号: 20150604422 题目: 儿童智能退热仪设计 评价项目评价要素成绩评定优良中及格不及格工作态度工作态度认真,按时出勤能按规定进度完成设计任务选题质量选题方向和范围选题难易度选题理论意义和实际应用价值能力水平查阅和应用文献资料能力综合运用知识能力研究方法与手段实验技能和实践能力创新意识设计论文质量内容与写作结构与水平规范化程度成果与成效指导教师意见建议成绩是否同意参加答辩评语:指导教师签名:2019年 5 月 23 日徐州工程学院毕业设计(论文)评阅教师评阅表学院: 机电工程学院 专业: 机械电子工程 学生: 葛舟 学号: 20150604422 题目: 儿童智能退热仪设计 评价项目评价要素成绩评定优良中及格不及格选题质量选题方向和范围选题难易度选题理论意义和实际应用价值能力水平查阅和应用文献资料能力综合运用知识能力研究方法与手段实验技能和实践能力创新意识设计论文质量内容与写作结构与水平规范化程度成果与成效评阅教师意见建议成绩是否同意参加答辩评语:评阅教师签名:2019年 5 月 25 日徐州工程学院毕业设计(论文)答辩及综合成绩评定表学 院机电工程学院 专 业机械电子工程 学生姓名葛舟 学 号20150604422 指导教师蔺超文 设计论文题 目儿童智能退热仪设计 答辩时间2019 年 5 月 26 日 10 时 20 分至 10 时40 分答辩地点敬本A504答辩小组成 员姓名张磊朱雷平梁良宋彬职称副教授讲师讲师助教答辩记录提问人提问主要内容学生回答摘要 答辩记录人签名:答辩小组意见答辩评语: 答辩成绩: 答辩小组组长签名:综合成绩评定指导教师评定成绩评阅教师评定成绩答辩成绩综合评定成绩 答辩委员会主任签名: 年 月 日 毕业设计(论文)外文翻译Wheeled mobile robot based on 51 single chip computer control system design学生姓名葛舟班 级15机电4学 号20150604422学院名称机电工程学院专业名称机械电子工程指导教师蔺超文2019年5月26日Advanced Materials ResearchOnline: 2013-11-21ISSN: 1662-8985, Vols. 846-847, pp 103-106doi:10.4028/AMR.846-847.103 2014 Trans Tech Publications, SwitzerlandWheeled mobile robot based on 51 single chip computer control system designJun Han1,a , Huijun Zhou 1,b1Mechanical Engineering school Inner Mongolia University of Science and Technology Baotou,Inner Mongolia, China,bzhouhuijun1988Keywords: Wheeled mobile robots; Control SystemAbstract. Controller is the core of robot control system. This design uses a dual stc89c52rc single chip microcomputer control, which processes and responds very quickly, with the campaign, obstacle avoidance, automatic tracing function. This article describes the hardware and software design of control system.IntroductionWheeled mobile robot is one of the important branches of the mobile robots1. Due to the advantages of its light weight, large carrying capacity, convenience to drive and control, high moving speed, it is used in areas such as space exploration, agriculture, industry, and household services2. Therefore, from practical and economic point of view, it is necessary to design and develop a system which can control the full range of wheeled mobile robot. I have designed and developed a system based on stc89c52rc single chip and related software to avoid obstacles, and to trace automatically.System StructureThe body using three - wheel type structure, two - wheel independent and separately driven by two motors, the front wheel is free round. This structure is characterized by car - body structure and composition of simple, WMR turning radius from zero to infinity, a shift to flexible3. System architecture diagram as shown in figure 1.Fig. 1 Wheeled mobile robot system chart104Advances in Mechatronics, Automation and Applied Information TechnologiesController design of the system CPUThis system adopts stc89c52rc Single-Chip Microcomputer which was introduced by the Hong Jin next - generation, low power, superior anti - interference of SCM. Instruction code is fully compatible with the traditional 8,051 MCU. The size of memory chip on it is 8k bytes, and can be expanded to 64k bytes ; the Board has three 16 - bit counters, a full duplex serial port, a boolean used to control the processor, the watchdog ; voltage range of 3.3 to 5.5v, the maximum operating frequency of 48mhz.In the controlling systems, controllers need to control the two machines, ultrasonic ranging sensors, tracing sensor, LCD monitors, and many other devices. If all tasks completed by a controller will affect processing and response speed of the system. Therefore, this design uses a 52rc single - chip computer control, U1 Single - Chip Microcomputer used to drive the LCD work, U2 single - chip microcomputer control for the entire system, through the I / O port communication between them. In order to achieve two coordinated control of single - chip Microcomputer to work together.Design of power supply modulePower supply module consists of three parts: the choice of power supply, LCD and Bluetooth serial port power switch, the program downloads switch. Power is formed by two 3.6v batteries in series, which 1, 2, 3 ports receiving the power outlet, with 1 negative, 2, 3 positive. The 1th port grounded power outlet, the 2nd port on the motor, the 3rd ports 5V regulator chip. Circuit diagram as shown in figure 2.Fig.2 Power circuit modulePower supply options: 5V regulator chip on the received power supply selector switch. If switch turn up, select the power supply ; if not, USB power supply.LCD power switch and the Bluetooth port:1th the port 5v regulator chip, 2nd - port LCD, interface programming button 3rd, the 4th port pick up the chip regulator and power outlet ports 3rd.Program download switch: If switch 1 turn up Bluetooth to communicate with single chip; if not, USB to communicate with single - chip computer.Advanced Materials Research Vols. 846-847105Design of motor - driven moduleThe design of wheeled mobile robots driven mainly driven by motors, encoders, chip. The motor using PWM speed and control. Based on the feedback signal pulse encoder, real - time motion control of mobile robots. Motor Driver IC selects l298N .l298N is a dedicated controller of stepper motor. It can generate a 4 - phase control signals to control motor. Motor drive circuit as shown in figure 3Fig. 3 Motor drive circuitSystem software designThe design of the system software using the C language and assembly language way of combining4. First using assembly language make up each function module of the system, and then put into the controller using the library. The main program written using the C language. This system is divided into two main modules: Avoidance and automatic tracing modules. Flowchart shown in figure 4, figure 5.106Advances in Mechatronics, Automation and Applied Information TechnologiesFig.4 Tracing module of the program flow chartFig.5 Barrie module of the program flow chartHuman physiology has given much of its attention to those systems which control in a multicellular organism the essential internal conditions: to respiration as it provides optimal concentrations of carbon dioxide, hydrogen ions and oxygen, to circulation as it maintains adequate blood flowrates and pressures, and to production and loss of energy as they are balanced through a regulatory mechanism for the maintenance of optimal body temperature.For the purpose of analysis, three main components may be distinguished with any regulatory system in physiology:1.Specific sensory-receptor organs register the physical or chemical quantity that is to be regulated. They produce nerve impulses commensurate with the magnitude of this stimulus.2.One or more effector organs act in response to the stimulus. This results in a return of the physical or chemical quantity registered toward the optimal level whereby the stimulus is reduced or abolished at the site of registration and else where.3.A coordinating center in the central nervous system receives the afferent nerve impulses. It produces efferent impulses which initiate or maintain the regulatory action of the effector organs.A physiological control mechanism cannot be considered clarified until its effector organs, center of coordination, and receptor sensory structures have been identified, and until the quantitative relations between causes and effects, that is, between physical or chemical stimuli and physiological responses, have been demonstrated. In this paper an attempt is described to clarify experimentally one of these mechanisms: the so-called physical heat regulation* of man. We shall also discuss the registration of temperature and the sense of temperature, functions no less important than the other senses to survival and performance at various intensities of exertion, on earth with its many climates. Such an attempt begins at the present state of knowledge and requires a brief history of the discoveries made in this field.For the regulation of temperature in experimental animals and man physiologists have detected, at very early times in some instances and more recently in others, the following possible co ponents suited for the sensory, central, or effector assignments:(a)The human skin contains terminal organs capable of initiating consciously perceived sensations of warm or cold.Moreover, following the discovery in 1904 by Kahn1 that elevated intracranial temperature is an effective stimulus for the activation of heat loss mechanisms, and the experiments of Barbour in 1912,2 pointing to the basal ganglia of the brain as a temperature-sensitive site, thermo regulatory responses to temperature have been elicited experimentally in animals by Magoun et al. (1938),3 by Hess and Stoll;Optico supraoptic region of the hypothalamus, a primitive part of the forebrain. Finally, C. von Euler (1950)6 succeeded in eliciting slow temperature potentials of highly specific characteristics through artificially induced changes of temperature in the preoptico supraoptic region of the hypothalamus in cats. These potentials are indicative of receptor cells translating thermal energy into electrical energy, much as a retinal cell changes the energy of light into an electrical potential.(b)On the effector side, three mechanisms for altering body temperature have been established: (1) an increase of total metabolic rate in response to cold environment was found by Rubner (1900)7 (this mechanism shall not be treated in the present paper); (2) in response to warm environment, sweat is secreted by cutaneous sweat glands, and heat is absorbed in its evaporation (measured by Rubner, 19007); (3) furthermore, in response to warm environment, the heat transferring component of blood flow (that is, the flow of blood between the interior of the body and the skin) increases substantially, which facilitates heat loss as long as internal temperature is higher than skin temperature. Thermoregulatory changes in bloodcirculation have been observed in 1900 by Rubner,7 and measured in 1936 quantitatively by Burton and Bazett8 in a bath calorimeter, with the method of determining thermal conductance introduced by Burton (1934).9(c)Earlier than the cerebral registration of thermal stimuli, the existence of a cerebral thermoregulatory center was discovered, with a puncture technique by Aronsohn and Sachs (1885).10 Isenschmidt and Krehl (1912)11 made animals poikilothermic by transsecting the diencephalon in its rear and middle part. After a separation of the telencephalon from the brain stem they found that temperature control was essentially intact. The efferent thermoregulatory impulses originate mainly from the caudolateral part of the hypothalamus and adjoining mesencephalic tegmentum, that is, at some distance from the thermally sensitive preopticosupraoptic tissue.From the undisputable pieces of experimental evidence a concept of autonomic physical temperature control was developed and generally accepted by physiology, in which the cerebral thermoregulatory system receives its main afferent thermoregulatory impulses from the thermoreceptors in the skin, and then evokes responses in the effector mechanisms, namely sweat glands and cutaneous vessels. Space does not permit quotation from the numerous original papers, monographs, physiological reviews and chapters on temperature control in the textbooks of medicine or physiology, in which the stimulus of internal temperature has been attributed a role no more important, and more often a role less important than the stimulus of temperature in eliciting afferent thermoregulatory impulses to the hypothalamus for vasomotor and sudomotor action. Much of the more recent work on physiological temperature control was designed to quantitate the part played by reflex control originating from cutaneous thermoreceptors.In some papers the role of internal temperature has been reduced to a mere influence upon the excitability of the centers for afferent impulses from the skin1213. In others, which assume a participation of both cutaneous and internal nerve impulses, mathematical equations, models, or electrical analogues have been applied to describe in quantitative terms the role of impulses from the skin.14-16 Moreover, attempts have been made to attribute the origin of impulses for the regulatory centers to deep skin receptors which register temperatures intermediate between internal and cutaneous or gradients between two sets of end organs in the skin, one deep and the other superficially locatedProgress in methods rather than theoretical considerations gave occasion to the present study with the availability of a new principle17 and instrumentation18 for human calorimetry. The first objective was to find whether cutaneous or internal temperature or both of them or none of them act as stimuli eliciting the known thermoregulatory reactions to environmental conditions. Secondly, it might be possible to clarify in a quantitative manner the function of this neural mechanism of sensory, central, and effector components. This would then help in finding rational approaches to physiological aspects such as limits of tolerance, protection or adaptation, or to the pharmacology of the vasomotor and sudomotor phenomena, or to pathology and clinics including the problems of fever and hypothermia for surgery. Needless to say that only the higher level of organization is meant by clarifying the mechanism, which excludes the molecular aspects of smooth muscle contraction, sweat secretion, nervous transmission, and transformation of thermal stimuli into nerve impulses.The experimental approach was by functional not anatomical analysis of the apparatus, without blocking measures, with all parts of the system intact and in vigorous thermoregulatory action, by simultaneous and continuous measurements of the responses and the two possible stimuli: internal temperature and skin temperature.These two temperatures, unfortunately, move jointly up or down under most physiological conditions and make it thus impossible for the experimenter to decide which one of the two was the stimulus for a response he observed. This difficulty may be overcome by experimental interference, dissociating the internal and cutaneous temperatures from their normal relation. Even so, there would be some interdependence and no plot could be obtained with, say, internal temperatures varying over a wide range, and skin temperature always at the same standard level or vice versa. Yet, such a plot would seem to be required for observation of the vasomotor and sudomotor responses to internal temperature without interference from cutaneous thermoceptors. The same considerations would apply to the con verse: observation of responses to temperature without interference from in ternal thermoreception. Fortunately, there are two very special cases in which unequivocal answers would be obtained: if the thermoregulatory system of vaso motor and sudomotor responses were completely insensitive to internal temperature, responses plotted against skin temperature would fall upon one best line, with all deviations random and within experimental errors. Conversely, if the system were completely insensitive to skin temperature, the responses plotted against internal temperature would fall upon one best line, with all deviations random and within experimental errors.After a careful study of the literature it became most unlikely that either one of these two special situations existed. However, if it did, the experiments would leave no doubt about it. One of the two plots would be smooth, the other disrupted, if measurements could be obtained at widely varied relations between internal and cutaneous temperatures. If both stimuli were powerful, neither of the two plots would make sense. If one of the two were the true stimulus and the other had some influence upon the response, however weak and of whatever origin, this would cause a directed, not random, dissociation of the plotted values. Prior to a discussion of the outcome a brief introduction is required on experimental tools and procedures.A.Calorimetry.T he quantitative principle of gradient calorimetry introduced in 194917 permits continuous and rapid recordings of heat loss, which in a steady state, is equal to metabolic heat production; a ventilatory air circuit with the gradient calorimeter permits the separate measurement of the rate of evaporative water loss as a component. A respiratory air circuit allows the separation of pulmonary heat losses from the heat transfer through the skin. From cutaneous heat loss and the difference between internal temperature, Tt, and cutaneous temperature, T., conductance, C = Q/(T1 - T,) (the thermal index of heat transferring blood circulation), is readily derived. It is therefore possible by gradient calorime try to obtain rapid and continuous recordings of the two responsessweatsecretion and peripheral blood-flow rate-simultaneously with the potential stimuli, namely, skin temperature and internal temperature. For the calorimetric tech niques and their reliability (error 士 1 per cent of human resting metabolism or 0.2 cal/sec), reference is made to a previous publication.18B.Thermometry.-For the measurement of internal body temperature, a site as well defined and as close as feasible to the hypothalamic heat center was chosen. Into the external auditory canal, 36-gauge twin wires of copper and constantan were introduced. The thermoelectric junction of the wires was placed at the tympanic membrane. Cotton insulation protected the site from undue influence of the en vironmental temperature. Stable and reproducible measurements, responsive to experimentally induced changes, were thus obtained. The correct location of the junction could be judged from the slight pain and alteration of hearing felt during the hours with the junction in position. These measurements at the tympanic.None of these differences is disturbing the experiments under consideration.Potentials from single junctions were amplified 100 times with a dc-breaker amplifier.Calibrations were carried out with certified mercury thermometers with the junction firmly attached to the bulb and the thermometer immersed in water. The readings were reproducible with in 士 0.01C. A standard temperature for all reference junctions was established arbitrarily but reproducibly at 38.380 士0.005C, in a 1 kg block of pure aluminum, accommodated in a thermos flask, which was protected by a collapsible polyethylene bag for deep immersion in a 60-gallon water tank. The tank was continuously stirred and regulated at 38.38 土 0.01C, using a larger mercury bulb and a fine capillary with platinum contact. The contact operated a relay for intermittent heating. Additional constant heat was applied. The bulb, capillary, and lead wires were also immersed deeply in the tank. Cooling was not required, with a room tempera ture of +24C.Skin temperature was measured in ten chosen places (forehead, cheek, upper arm, chest, back, lateral thigh, medial thigh, calf, dorsal foot, dorsal hand), and integrated by wiring these ten thermoelectric potentials in series, with tenfold amplification (to match the response of internal temperature as measured with one thermocouple and one hundredfold amplification). The deflection obtained on the recorder was 10 cm/C0 for all temperature measurements. The skin junctions were isolated with moistureproof resin and placed between two pieces of soft 100 mesh copper wire-screen, 1 X 2 inches. These were firmly attached to each other and to the skin for thermal contact. Copper screen was used for its thermal conductivity and negligible interference with sweat evaporation from the site of measurement.An independent check on this way of measuring and integrating average skin temperature was carried out by calorimetry: through experimental interference, human heat loss may be altered so that it changes sign, going through zero. At these instants, the driving force of human heat loss, namely, the temperature gradient between internal and skin temperature, must also be observed to be zero, if all the independent calorimetric and thermometric measurements are correct. Figure 2 shows that this was indeed the case, except for a shift by 0.1C-or 1.2 percent of the difference between air and skin temperatures-toward air temperature, under extreme conditions. With this applied as a correction, average skin tem peratures as measured are considered reliable within 土 0.1C centigrade. This seems satisfactory compared with a range of 12Cover which skin temperature varied between the limits of our experimental conditions of environment. The independent confirmation by calorimetry should eliminate from the discussion of the experiments reported here the never-ending argument, whether or not skin temperature was correctly measured, and correctly integrated over the entire surface of the body.C.Means of Influencing Separately Cutaneous and Internal, Body Temperatures.To influence skin temperature, levels of environmental temperature were varied between experiments on different days over a range from +10to +45C in 5C steps.This covers on the hot side, the range in which a nude resting subject can maintain a thermal steady state for an indefinite period with his physical heat regulation. In order to obtain reproducible steady states, waiting periods of one to two hours were often required, and some of the experiments including work periods lasted up to seven hours. The subject wore bathing trunks. He was suspended in the supine position on wire-screen as described in reference 18. Wall and air temperatures in the calorimeter were kept alike. Ventilatory air was supplied at a rate of 800liters/minute with a water vapor pressure of 6.3 mm Hg throughout. The resulting relative humidity in the calorimeter was of the order 25 per cent with the resting subject, or 50 per cent during exercise. In this way it was ascertained that full wetting of the skin never occurred during the experiments. Any loss of water by dripping sweat without evaporation would have been physiologically meaningless and technically incorrect, since the measurement was based on the heats of evaporation and condensation. Whenever, as in these experiments, the water secreted from the sweat glands is immediately and completely evaporated, the heat of evaporation represents directly the rate of sudomotor action. Respiratory air was separately supplied with a flow rate of 100 liters per minute at a temperature of 37.5C with 50 per cent relative humidity throughout, regardless of environmental temperature. These conditions were established to avoid a direct influence of the variations in environmental temperature, upon the chest organs. For similar reasons nose breathing was maintained throughout, with a breathing mask by which the subject inhaled from, and exhaled into the constant 100 liter air stream of the respiratory circuit. The excess air of the circuit does not enter the calorimeter. The water vapor content of the air in the calorimeter was measured at one-minute or five-minute intervals, and rates of change, if any, were applied as a correction to the calorimetric readings.For influencing artificially the temperature prevailing at the internal thermoceptive system, physical exercise proved to be most useful. Steady states may be obtained by exercise with increased metabolic heat production and loss. This leads to elevated steady levels of internal temperature, whereas skin temperature is influenced very little, and often, so it was found, in the opposite direction (skin cooler during exercise). Two levels of physical exercise were used: 6 calories and 12 calories of work output per second, which was measured by means of a special ergometer, to be described elsewhere.With an efficiency of approximately 25 per cent for the mechanochemical conversion of energy in muscle, the 6 or 12 cal/ sec work levels resulted in 25 to 50 cal/sec increase of metabolic rate over the resting level of approximately 20 cal/sec.While muscular exercise appeared to be the method of choice for a separation of internal and skin temperatures in steady states for a high reproducibility in quantitative observations, a different technique was found to be useful with nonsteady states and rapid changes.By repeated eating of ice-water emulsions, internal temperature maybe thrown into a cycle of fluctuations covering with its amplitude more than one-third of the entire range of physiological control. Although under these conditions, there is not enough time for every measurement to arrive at its final and entirely reproducible level, the ice procedure is suited to show in one experiment without further evaluation, which of the two, skin or internal temperature as a stimulus, is answered by the effector mechanisms of human heat loss.ConclusionsThe wheeled mobile robot is designed with a double 51 single chip controller. So it has a simple structure,a better reaction speed, and strong anti-interference ability with a lower cost. It has been proved to meet the purpose, and it provides a good theoretical foundation for further research and development in the future.References1 Ming Tan, China Academic Journal Electronic Publishing House,2001.2 Leilei Zhu, Jun Chen: A survey of wheeled mobile robots, CA: Hydromechatronics Engineering, 2009, 37(8):243-247.3 Wang Chen W D. Xi Y G.Uncertain information based map building of mobile robot in absolutely unknown environment.Robot,2001,23(6):563-568.4 Wenxin Hu, Wheeled mobile robot based on 8051 single chip microcomputer control system, Project technique, 2003:101.5 Information on /Advances in Mechatronics, Automation and Applied Information Technologies10.4028/AMR.846-847Wheeled Mobile Robot Based on 51 Single Chip Computer Control System Design10.4028/AMR.846-847.10332毕业设计(论文)外文翻译Wheeled mobile robot based on 51 single chip computer control system design学生姓名葛舟班 级15机电4学 号20150604422学院名称机电工程学院专业名称机械电子工程指导教师蔺超文2019年5月26日43基于51单片机的轮式移动机器人控制系统设计关键词:轮式移动机器人;控制系统摘要:控制器是机器人控制系统的核心。本设计采用双stc89c52rc单片机控制,具有运动、避障、自动跟踪等功能,处理和响应速度快。本文介绍了控制系统的硬件和软件设计。介绍:轮式移动机器人是移动机器人1的重要分支之一。由于其重量轻、承载能力大、驱动控制方便、移动速度快等优点,广泛应用于航天、农业、工业、家政等领域。因此,从实用和经济的角度出发,有必要设计和开发一种能够对轮式移动机器人进行全方位控制的系统。设计开发了基于stc89c52rc单片机及相关软件的避障自动跟踪系统。系统结构:车身采用三轮式结构,两轮独立,由两个电机单独驱动,前轮为自由圆。该结构的特点是车身结构和组成简单,WMR转弯半径从零到无穷大,向柔性方向移动。系统架构图如图1所示系统CPU控制器设计本系统采用stc89c52rc单片机,由宏进公司引进的下一代单片机,功耗低,抗干扰能力强。指令码完全兼容传统8051单片机。其存储芯片大小为8k字节,可扩展至64k字节;主板有三个16位计数器,一个全双工串口,一个布尔用来控制处理器、看门狗;电压范围3.3 5.5v,最大工作频率为48mhz。在控制系统中,控制器需要控制两台机器、超声波测距传感器、跟踪传感器、液晶显示器等多种设备。控制器完成的所有任务是否会影响系统的处理和响应速度。因此,本设计采用52rc单片机控制,U1单片机驱动LCD工作,U2单片机控制整个系统,通过I / O口实现它们之间的通信。为了实现两种单片机的协调控制,共同工作。电源模块设计:电源模块由电源选择、LCD和蓝牙串口电源开关、程序下载开关三部分组成。电源由2节3.6v串联电池构成,1、2、3个端口接电源插座,1个负极、2、3个正极。第一端口接地电源插座,电机上的第二端口,第三端口5V稳压芯片。电路图如图2所示 图2电源选项:5V稳压芯片上接收电源选择开关。如果开关打开,选择电源;如果没有,USB电源。LCD电源开关与蓝牙端口:1口5v稳压器芯片,2口LCD,接口编程按键3,4口接芯片稳压器,电源插座3。程序下载开关:如果开关1打开蓝牙与单片机通信;如果没有,USB可以与单片机通信。电机驱动模块设计轮式移动机器人的设计主要由电机驱动、编码器驱动、芯片驱动。电机采用PWM调速和控制。基于反馈信号脉冲编码器,实现了移动机器人的实时运动控制。电机驱动芯片选用l298N, l298N是步进电机专用控制器。它可以产生一个四相控制信号来控制电机。电机驱动电路如图3所示图3系统软件设计本系统软件设计采用C语言和汇编语言相结合的方式实现。首先用汇编语言构成系统的各个功能模块,然后用库将其放入控制器中。用C语言编写的主程序。该系统主要分为两个模块:避碰模块和自动跟踪模块。流程图如图4、图5所示人体生理学的注意了这些系统控制在多细胞生物至关重要的内部条件:呼吸,因为它提供了最佳浓度的二氧化碳,氢离子和氧,循环,维持足够的血液流量和压力,和生产损失的能量平衡通过监管机制对维护最佳的身体温度。为了便于分析,生理学上的任何调节系统都可以将三个主要成分区分开来:1.特定的感觉感受器器官记录要调节的物理或化学量。它们产生的神经冲动与这种刺激的大小相称。2.一个或多个效应器官对刺激作出反应。这导致了物理或化学量的回归登记到最佳水平,其中刺激是减少或取消在登记地点和其他-在哪里。3.中枢神经系统的协调中心接收传入神经脉冲。它产生传出脉冲,启动或维持效应器官的调节作用。只有确定了效应器官、协调中心和受体的感觉结构,并证明了因果关系,即物理或化学刺激与生理反应之间的数量关系,才能认为一种生理控制机制是清楚的。本文试图从实验上阐明这些机制之一:所谓的人的“物理热调节”。我们还将讨论温度和温度感的配准。在地球上有许多气候,在不同强度的运动中,温度和其他感觉对生存和表现的作用并不亚于其他感觉。这种尝试从目前的知识状态开始,需要对这一领域的发现有一个简要的历史。对于实验动物和人的体温调节,生理学家在很早的时候就发现了以下几种可能的共同因素:(a)人体皮肤含有能够引起有意识地感觉到温暖或寒冷的感觉的末梢器官。此外,在1904年被发现后Kahn1颅内温度升高是一种有效的刺激激活的热损失机制,和巴伯在1912年的实验2指向大脑基底神经节的热敏网站,热监管对温度的反应已引起实验动物;下丘脑的视上区,前脑的原始部分。最后通过人工诱导猫下丘脑视上皮质前区温度的变化,成功地诱导出具有高度特异性的“慢温电位”。这些电位表示受体细胞将热能转化为电能,“就像视网膜细胞将光能转化为电势一样。”(b)效应体方面,已经建立了三种改变体温的机制:发现寒冷环境下总代谢率增加(本论文不讨论该机制);(2)在温暖的环境下,汗液由皮肤汗腺分泌,受热蒸发吸收;(3)此外,在温暖的环境下,血液流动的传热成分(即身体内部与皮肤之间的血液流动)大幅增加,只要内部温度高于皮肤温度,就会导致热量损失。血液温度调节的变化循环在1900年被所观察到,1936年被Burton和Bazett在浴式量热计中定量测量Burton(1934)引入了热“导”的测定方法(c)早于热刺激的大脑登记,Aronsohn和Sachs(1885)通过“穿刺”技术发现了大脑热调节中心的存在。Isenschmidt和Krehl(1912)通过切除动物后脑和中脑的间脑,使动物变温。在端脑与脑干分离后,他们发现温度控制基本完好无损。传出的热调节脉冲主要来自下丘脑尾外侧部分和邻近的中脑被盖,即在一定距离上视前热敏感组织。从无可争议的实验证据中提出了一个概念自主物理温度控制是由生理、发达和普遍接受的大脑体温调节系统接收其主要从皮肤温度感受器传入体温调节的冲动,然后唤起反应的效应机制,即汗腺和皮肤的血管。空间不允许引用了大量原始论文,专著,生理上的评论和教科书的章节在温度控制医学或生理学、内部温度的刺激被认为一个角色没有更重要的是,和更多比一个角色重要的温度刺激诱发传入下丘脑的体温调节的脉冲血管舒缩性和催汗的动作。最近许多关于生理温度控制的工作都是为了量化皮肤热感受器的“反射”控制所起的作用。在一些论文中,内部温度的作用已经降低到仅仅影响皮肤传入脉冲中心的兴奋性。在另一些假设同时有皮肤和内部神经冲动参与的研究中,数学方程、模型或电类似物被用来定量描述来自皮肤的冲动所起的作用。14-16此外,人们还试图把调节中心脉冲的起源归因于深层皮肤感受器。深层皮肤感受器负责记录皮肤内部和皮肤之间的温度,或皮肤中两组末端器官(一组位于皮肤深处,另一组位于皮肤表层)之间的梯度随着人类量热学的新原
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:儿童智能退热仪设计
链接地址:https://www.renrendoc.com/paper/209452289.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!