Numerical Simulation and Analysis for Metal Cutting Processes Based on FEM and SPH.pdf

支架工艺规程及加工3×Φ7螺纹孔工装夹具设计及建模(PROE)

收藏

资源目录
跳过导航链接。
支架工艺规程及加工37螺纹孔工装夹具设计及建模PROE.zip
支架工艺规程及加工3×Φ7螺纹孔工装夹具设计及建模(PROE)
调研报告.doc---(点击预览)
设计说明书(论文).doc---(点击预览)
毕业设计(论文)记载.doc---(点击预览)
AO-装配图.dwg---(点击预览)
外文翻译
工艺工序卡片
总装及零件图
babingdiankuai43520_1.prt.1
babingdiankuai43520_2.prt.1
d2_gb848_1.prt.1
d2_gb848_3.prt.1
d6_gb93_1.prt.1
d6_gb93_2.prt.1
d6_gb95_1.prt.1
d6_gb95_2.prt.1
dianpian_1.prt.1
dianpian_2.prt.1
dingweikuai42x28_1.prt.1
dingweikuai42x28_2.prt.1
dingweikuai42x76x23_1.prt.1
dingweikuai42x76x23_3.prt.1
dingweikuai_1.prt.1
dingweikuai_1.prt.2
dingweiluoshuan_1.prt.1
dingweiluoshuan_3.prt.1
gudingtao_1.prt.1
gudingtao_4.prt.1
jiagongjia_1.prt.1
jiagongjia_7.prt.1
jiajuti.prt.1
jiajuti_1.prt.1
jiajuti_5.prt.1
kongxinluomu_1.prt.1
kongxinluomu_1.prt.2
m2x30_gb901_1.prt.1
m2x30_gb901_4.prt.1
m2_gb6170_1.prt.1
m2_gb6170_2.prt.1
m30_gb41_1.prt.1
m30_gb41_3.prt.1
m4x12_gb830_1.prt.1
m4x12_gb830_3.prt.1
m6x20_gb830_1.prt.1
m6x20_gb830_3.prt.1
m6_gb41_1.prt.1
m6_gb41_3.prt.1
m8x65_gb901_1.prt.1
m8x65_gb901_4.prt.1
shoubing_1.prt.1
shoubing_4.prt.1
spring_compressed_1.prt.1
spring_compressed_7.prt.1
trail.txt.1
trail.txt.2
trail.txt.3
trail.txt.4
trail.txt.5
trail.txt.6
trail.txt.7
trail.txt.8
trail.txt.9
zhichengban_1.prt.1
zhichengban_8.prt.1
zongzhuang2_asm.asm.1
zongzhuang2_asm.stp
zongzhuang2_asm_1.asm.1
zongzhuang2_asm_1.asm.2
zongzhuang2_asm_15.asm.1
拆画零件图
压缩包内文档预览:
预览图 预览图 预览图 预览图
编号:210146180    类型:共享资源    大小:9.42MB    格式:ZIP    上传时间:2022-04-29 上传人:机****料 IP属地:河南
50
积分
关 键 词:
支架 工艺 规程 加工 螺纹 工装 夹具 设计 建模 PROE
资源描述:

资源目录里展示的全都有,所见即所得。下载后全都有,请放心下载。原稿可自行编辑修改=【QQ:401339828 或11970985 有疑问可加】

内容简介:
Numerical Simulation and Analysis for Metal Cutting Processes Based on FEM and SPH* * * * AbstractBy using the coupling method of FEM and SPH, constitutive behavior of material in the metal cutting process was simulated and cutting mechanisms were analyzed. The simulation results show that the cutting process is a plastic deformation process in which cutting layer material produces shearing slip due to the extrusion of cutting tool; the extrusion and friction from cutting edge result in cold plastic deformation of material in formed surface layer, and form residual stress; the cutting force increases rapidly and then decreases, eventually varies in a certain range; the maximal effective stress varies at a certain distance to the cutting edge in stable cutting stage. Key words: metal cutting; numerical simulation; finite element method; SPH method I. INTRODUCTION Metal cutting process is a complex machining technology. It not only relates to elasticity, plasticity and fracture mechanics but also involves tribology and thermodynamics. Cutting quality is influenced by many factors, such as the shape of tool, cutting parameters, cutting heat, cutting-tool wear and so on 1. It is very different to quantificationally analyze and research cutting mechanism by analytic method. It wastes man-hour and increases production costs by trial and error method. As a new research method for metal cutting mechanism, computer simulation method is convenient and efficient. Among them, finite element method is most widely used in the simulation of metal cutting, and has got some significant achievements 2, 3. Finite element method is a mesh method. Separation criterion and fracture criterion of chip have to be artificially set in the simulation of metal cutting process, or the meshes in the cutting deformation area will be distorted. It is not exactly in agreement with actual conditions. The development of meshless method provides an effective solution for the problem. Smooth particle hydrodynamics (SPH) is a kind of mature meshless method. Simulation model is built with discrete particles in SPH, so big deformation in metal cutting process can be effectively solved 4-6. In the simulation of mechanical deformation of continuum medium, FEM is more efficient than SPH, but it is inferior to SPH in the simulation relates to big deformation and discontinuous medium. So the paper simulates metal cutting process by the coupling method of FEM and SPH based on LS-DYNA software. It complements the shortcomings of single method. II. BASIC PRINCIPLES OF THE SPH METHOD In SPH, simulation model is built with discrete particles. The mass of particle is fixed in its coordinate system. Therefore SPH method is similar to Lagrange method. Its basic equations are also energy conservation equation and constructive equation of solid material. Physical flow field in SPH is described with a set of flowing particles which has a certain velocity. Each particle is an interpolation point with characteristics of flow field. The whole solution can be got by the interpolation function of these particles 7, 8. The basis of SPH is interpolation principle 9. Any macro variable (such as density, press, temperature etc) can be got by integral interpolation of a set of disordered particles. Interactions of particles are expressed by interpolation function. Approximate function of particles is , (1) =yh, yxWyfxfh)d()()(where W is the kernel function (interpolation kernel), it is expressed below: )()(1)(xxhh, xWd=, (2) where d is the space dimension, h is the smoothing length. Assistant function is +=2021)2(2501750511)(332uuu.uu.u.Cu, (3) where C is a normalization constant. The smoothing length h is an important influence factor of computation efficiency and precision. In order to avoid negative influence due to material compression and expansion, varying smoothing length is proposed by W. Benz. Smoothing length h dynamically varies with the variation of time and space. It increases with the increase of distance between particles. It decreases with the decrease of distance between particles. Its variation range is HMINh0 h HMAXh0 , (4) where h0 is the initial smoothing length. Influence range of SPH particle is a spherical region, whose radius is h. In every time step, it must be known that which particles are in the region. Therefore search must be implemented. Bucket classification method of contact searching algorithm is used for the search in SPH. As shown in Fig. 1, firstly, the whole region is divided into some sub-regions, and then the region of each particle and its *This work is supported by the scientific research key project fund of the Ministry of Education of China #20060145017 SPH particles neighbor regions are searched. By using the searching method, III. MODELING ANDcomputation is greatly reduced. SIMULATION A. Coupling m area of workpiece is particles and Lagrange meshes. Its left part is SPH particles. odel of FEM and SPH In this paper, big deformationmodeled with SPH particles, and small deformation area of workpiece and cutting tool are modeled with Lagrange meshes. Fig.2 shows the coupling schematic illustration of SPH Its right part is Lagrange meshes. SPH particles and Lagrange meshes are coupled by using node-surface contact type in LS-DYNA. Failure criterion of coupling contact 10 is 121snmmfffails,failn,+ff, (5) where fn, fs, fn,fai, fs,fail are the normal stress, shear stress, l is simpaterial is 45 steel. Material model is normal failure stress and shear failure stress. m1, m2 are exponents of normal stress and shear stress, respectively. In order to reduce computing time, simulation modelified, as shown in Fig.3. Workpiece is a cuboid of 6mm (length) 4mm (height) 0.2mm (width). The size of finite element mesh is 0.1mm. Cutting deformation area is modeled with SPH particles of 0.33mm (radius). Tool rake angle 0 is 10 and relief angle 0 is 6. B. Material model Workpiece mpiecewise linear isotropic plasticity with an arbitrary stress versus strain curve. It is suitable for steels. Strain rate is accounted for using the Cowper-Symonds model. The relation between strain rate and yield stress 10 is ()()PeffnP1YfC+=01, (6) wheris the strain rate, C and P are the strain rate parameters, T5). Its hardness and strene0 is the initial yield stress and )(peffnfis the hardening function with effective plastic strain. Tool material is hard alloy (Ygth are much higher than workpiece. It is considered as elastic body. Table 1 lists some material characteristics of cutting tool and workpiece, where 16 are corresponding yield stress values to effective plastic strain values 16.TABLE I MATERIAL CHARACTERISTICS OF CUTTING TOOL AND WORKPIECE UNIT SYSTEMS: kg-mm-ms 123456 Elastic ratio(E) Poisson ratio Density () Strain rate parameters (C) Strain rate parameters (P) 1234560.36 0.38 0.42 0.500.560.60workpiece 200 0.30 7.810-640 5 0.015 0.025 0.05 0.0750.10.15Cutting tool 600 0.15 1.310-5 C. Boundary conditions Cutting tool moves along the negative direction of the x-axis, therefore y, z translations and all rotations are constrained. All translations and rotations of the bottom of finite element model are constrained. For SPH part, symmetric planes must be established by virtual particles. These particles are actually mirror particles of solid particles nearby the boundary of 2h0 (h0 is initial smoothing length), as shown in Fig. 4. Physical quantities of virtual particles and solid particles are symmetric about the fixed boundary plane. Therefore virtual particles can produce constraint to solid particles. It makes the velocity of solid particles keep in the Fig. 3 3D simulation model of metal cutting h Finite element meshFig. 1 Bucket classification and local search Fig. 2 Coupling schematic illustration of SPH particles and Lagrange meshes. value of zero, and solid particles can not penetrate boundary. IV. ANALYSIS OF SIMULATION RESULTS A. Chip formation In this paper, the processes of cutting deformation and chip formation of 45 steel are simulated. Cutting velocity vs is 10m/s. Cutting depth ap is 0.5mm. From Fig. 5(a) it can be seen that there exists biggish contact stress at the contact zone between tool edge and cutting layer material. It is high up to 658.6MPa. The value is higher than yield strength of 45 steel. Therefore the material at the contact zone produces irreversible deformation; the material of other zones is still in elastic state. With the continuous moving of tool, the contact area between tool edge and cutting layer increases gradually. The cutting layer material happens to pile up on the rake face. Inner stress of the material increases gradually. As shown in Fig. 5(b), the effective stress in primary deformation zone is much higher than yield strength. Therefore the material in primary deformation zone is in plastic state. Under the extrusion of cutting tool and subsequent flowing material, the material in plastic state moves upward along rake face. The material forms chip after flowing out primary deformation zone, as shown in Fig. 5(c). From Fig. 5(d) it can be seen that internal structure of formed surface layer material happens to change, and exist residual stress in the formed surface layer. The simulation process shows that the extrusion and friction from cutting edge result in cold plastic deformation of material in formed surface layer, and form residual stress. Fig. 6 shows variation curve of maximum effective stress of workpiece in metal cutting process. It can be seen that maximum effective stress sharply increases in the starting phase. The value is high up to 1.4GPa at 0.11ms, and then decreases. Chip forms gradually at this time. The maximum effective stress eventually varies at the range of 1.21.4GPa. B. Analysis of cutting force From Fig. 7 it can be seen that the cutting force increases sharply and then decreases, eventually varies in a certain range. In the metal cutting process, with the increase of contact area between cutting tool and cutting layer material, cutting force and inner stress of the material at contact zone increase gradually. When the inner stress is up to yield strength, the material produces shearing slip and flows out from primary deformation zone. It makes cutting force decrease a little. Material yielding and chip formation continuously happen, therefore cutting force waves in a certain range. C. Analysis of stress and strain of cutting tool From dynamic simulation process it can be seen that there exists biggish contact stress at cutting edge in the beginning of cutting. With the proceeding of cutting, the material deformed moves upward along rake face and extrudes rake face. The maximum contact stress at rake face moves upward too. After the formation of chip, the maximum effective stress waves at a certain distance to the cutting edge (as shown in Fig. 8). Therefore cutting-tool wear is severe in the position. Stress distribution curve of rake face at 0.2ms is shown in Fig. 9. It can be seen that contact stress at cutting edge is biggish. It is up to maximum value at 0.4mm to cutting edge, Fig. 6 Variation curve of maximum effective stress Time (ms) Maximum effective stress (GPa)Fig. 4 Symmetric plane of SPH model 2h0 h h h0 Solid particle Virtual particle Smoothing length Initial smoothing length Fig. 5 Deformation process of the cutting layer material (a) t=0.02ms (b) t=0.06ms (c) t=0.14ms (d) t=0.35ms Fig. 7 Variation curve of cutting force Resultant force (kN) Time (ms) and then decreases gradually. curves of maximum effective V. CONCLUSION 1) The coupling method of FEM and SPH complements the shortcomings of single method. The simulation results show that it is effective in the simulation of metal cutting process. 2) The cutting process is a plastic deformation process in which cutting layer material produces shearing slip due to the extrusion of cutting tool. 3) The extrusion and friction from cutting edge result in cold plastic deformation of material in formed surface layer, and eventually form residual stress. uidance. Without his consisttruction, this paper coul1 J.-Z. Lu, J.-N. Sun, The Theory of Metal Cutting and Cutting Tool, Beijing: Mechanical Industry Publishing House, 2001. 2 S.-J Chen, Q.-L Pang and K. Cheng, “Finite element simulation of the orthogonal metal cutting process”, Materials Science Forum, no. 471-472, pp. 582-586, 2004. 3 A.-G. Mamalis, M. Horvath, A.-S. Branis, et al, “Finite Element Simulation of Chip Formation in Orthogonal Metal Cutting”, Journal of Materials Processing Technology, vol. 110, no. 5, pp. 19-27, Mar, 2001. 4 R. Vignjevic, J.-R. Reveles, “SPH in a total lagrangian formalism” CMES - Computer Modeling in Engineering and Sciences, vol. 14, no. 3, pp. 181-198, 2006. 5 W. Benz, E. Asphaug, “Simulation of Brittle Solids Using Smooth Particle Hydrodynamics”, Computer Physics Communications, vol. 87, no. 1-2, pp. 253-265, 1995. 6 C. Antoci, M. Gallati and Sibilla, S, “Numerical simulation of . 7 f circular tube using SPH method”, Key Engineering 8 ang, R.-R. Long, “SPH simulation of hypervelocity 9 “SPH method applied to high 10poration. Livermore, California, 1998Fig. 9 Stress distribution curve of rake face at 0.2ms Fig. 10 shows variationstress and strain at cutting tool surface. Without considering the abnormal local jump in the curves, it can be seen that the maximum effective stress sharply increases to 0.28GPa, and eventually keep waving at 0.35GPa. The maximum effective strain keeps waving at 0.03%. Elastic deformation of cutting tool is very small 4) After the f
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:支架工艺规程及加工3×Φ7螺纹孔工装夹具设计及建模(PROE)
链接地址:https://www.renrendoc.com/paper/210146180.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!