开关电源共模干扰抑制技术,开关电源共模电磁干扰EMI策详解_第1页
开关电源共模干扰抑制技术,开关电源共模电磁干扰EMI策详解_第2页
开关电源共模干扰抑制技术,开关电源共模电磁干扰EMI策详解_第3页
开关电源共模干扰抑制技术,开关电源共模电磁干扰EMI策详解_第4页
开关电源共模干扰抑制技术,开关电源共模电磁干扰EMI策详解_第5页
免费预览已结束,剩余1页可下载查看

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、开关电源地共模干扰抑制技术|开关电源共模电磁干扰(EMI对策详解0引言因为MOSFET及IGBT和软开关技术在电力电子电路中地广泛应用,使得功率变换器地开关频率越来越高,结构更加紧凑,但亦带来许多问题,如寄生元件产生地影响加剧,电磁辐射加剧等,所以EMI问题是目前电力电子界关注地主要问题之一.传导是电力电子装置中干扰传播地重要途径.差模干扰和共模干扰是主要地传导干扰形态.多数情况下,功率变换器地传导干扰以共模干扰为主.本文介绍了一种基于补偿原理地无源共模干扰抑制技术,并成功地应用于多种功率变换器拓扑中.理论和实验结果都证明了,它能有效地减小电路中地高频传导共模干扰.这一方案地优越性在于,它无需

2、额外地控制电路和辅助电源,不依赖于电源变换器其他部分地运行情况,结构简单、紧凑.1&nbsp。补偿原理共模噪声与差模噪声产生地内部机制有所不同:差模噪声主要由开关变换器地脉动电流引起;共模噪声则主要由较高地d/d与杂散参数间相互作用而产生地高频振荡引起.如图1所示.共模电流包含连线到接地面地位移电流,同时,因为开关器件端子上地d/d是最大地,所以开关器件与散热片之间地杂散电容也将产生共模电流.图2给出了这种新型共模噪声抑制电路所依据地本质概念.开关器件地d/d通过外壳和散热片之间地寄生电容对地形成噪声电流.抑制电路通过检测器件地d/d,并把它反相,然后加到一个补偿电容上面,从而形成补偿

3、电流对噪声电流地抵消.即补偿电流与噪声电流等幅但相位相差180。,并且也流入接地层.根据基尔霍夫电流定律,这两股电流在接地点汇流为零,于是50。地阻抗平衡网络LISN)电阻接测量接收机地BNC端口)上地共模噪声电压被大大减弱了.图1CM及DM噪声电流地耦合路径示意图fnDisc+('/floiK-4*图2提出地共模噪声消除方法2基于补偿原理地共模干扰抑制技术在开关电源中地应用本文以单端反激电路为例,介绍基于补偿原理地共模干扰抑制技术在功率变换器中地应用.图3给出了典型单端反激变换器地拓扑结构,并加入了新地共模噪声抑制电路.如图3所示,从开关器件过来地d/d所导致地寄生电流para注入接

4、地层,附加抑制电路产生地反相噪声补偿电流comp也同时注入接地层.理想地状况就是这两股电流相加为零,从而大大减少了流向LISN电阻地共模电流.利用现有电路中地电源变压器磁芯,在原绕组结构上再增加一个附加绕组NC.因为该绕组只需流过由补偿电容comp产生地反向噪声电流,所以它地线径相对原副方地P及S绕组显得很小<由实际装置地设计考虑决定).附加电路中地补偿电容comp主要是用来产生和由寄生电容para引起地寄生噪声电流反相地补偿电流.comp地大小由para和绕组匝比P:C决定.如果P:C=1,则comp地电容值取得和para相当;若P:C*1,贝Ucomp地取值要满足comp=para-

5、d/d.图3带无源共模抑制电路地隔离型反激变换器此外,还可以通过改造诸如Buck,Half-bridge等DC/DC变换器中地电感或变压器,从而形成无源补偿电路,实现噪声地抑制,如图4,图5所示.图4带有无源共模抑制电路地半桥隔离式DC/DC变换器图5带有无源共模抑制电路地Buck变换器3实验及结果实验采用了一台5kW/50Hz艇用逆变器地单端反激辅助电源作为实验平台.交流调压器地输出经过LISN送入整流桥,整流后地直流输出作为反激电路地输入.多点测得开关管集电极对实验地<机壳)地寄生电容大约为80pF,鉴于实验室现有地电容元件,取用了一个100pF,耐压1kV地瓷片电容作为补偿电容.一

6、接地铝板作为实验桌面,LISN及待测反激电源地外壳均良好接地.图6是补偿绕组电压和原方绕组电压波形.补偿绕组精确地反相重现了原方绕组地波形.图7是流过补偿电容地电流和开关管散热器对地寄生电流地波形.从图7可以看出,补偿电流和寄生电流波形相位相差180。在一些波形尖刺方面也较好地吻合.但是,因为开关管地金属外壳为集电极且与散热器相通,散热器形状地不规则导致了开关管寄生电容测量地不确定性.由图7可见,补偿电流地幅值大于实际寄生电流,说明补偿电容地取值与寄生电容地逼近程度不够好,取值略偏大.图8给出了补偿电路加入前后,流入LISN接地线地共模电流波形比较.经过共模抑制电路地电流平衡后,共模电流地尖峰

7、得到了很好地抑制,实验数据表明,最大地抑制量大约有14mA左右.图6补偿绕组电压和原方绕组电压波形图7补偿电容电流和对地寄生电流波形图8补偿前后流入LISN地地共模电流波形<电流卡钳系数:100mV/A)1*SATS,Spmim.Aniih/tfr(I44i)2l<i图9是用AgilentE4402B频谱分析仪测得地共模电流地频谱波形.可见100kHz到2MHz地频率范围内地CM噪声得到了较好地抑制.但是,在3MHz左右出现了一个幅值突起,之后地高频段也未见明显地衰减,这说明在高频条件下电路地分布参数成了噪声耦合主要地影响因素,补偿电路带来地高频振荡也部分增加了共模EMI噪声地高频

8、成份.但从滤波器设计地角度来看,这并不太多影响因为降低了低次谐波噪声而节省地设备开支.若是能较精确地调节补偿电容,使其尽可能接近寄生电容Cpara地值,那么抑制地效果会在此基础上有所改善.015g2E:4.82E+OISWE例1.32E-OS22E-00图9补偿前后流入LISN地地CM电流频谱比较4此技术地局限性图10中地<a),<b),<c),<d)给出了噪声抑制电路无法起到正常效用时地电压、电流地波形仿真情况.这里主要包含了两种情况:第一种情况是在输入电容地等效串联电感<)上遇到地.电感在整个电路中充当了限制电流变化率d/d地角色,很显然LISN中大电感量地串

9、联电感限制了变换器电源作为电流源提供地能力.因此,这些脉动电流所需地能量必须靠输入电容来供给,但是输入电容自身地也限制了它们作为电流源地能力.愈大,则输入端电容提供给补偿变压器所需高频电流地能力愈受限制.当为100nH时,补偿电路几乎失效.图10<a)中虽说补偿电压与寄生CM电压波形非常近似,但是图10<b)中却很明显看出流过补偿电容comp地电流被限制了.另外一种严重地情况是补偿变压器地漏感.当把变压器漏感从原来磁化电感地0.1%增大到10%地时候,补偿电路也开始失效,如图10<c)及图10<d)所示.补偿绕组电压波形因为漏感和磁化电感地缘故发生分叉.如果漏感相对于磁化电感来说很小地话,这个波形畸变可以忽略,但实际补偿电容上呈现地d/d波形已经恶化,以至于补偿电路无法有效发挥抑制作用.?00jI-20050oil-,OOW70008Q.OT9W001<a)输入电容值较大时地CM电压<b)输入电容值较大时地CM电流-1000JII0科丁000fl<)8C00999001<c)漏感值较大时地CM电压<d)漏感值较大时地CM电流图10噪声电路失效仿真电压、电流波形为了解决和变压器漏感这两个严重地限制因素,可以采取以下措施:对于输入电容地,要尽量降低至可以接受地

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论