




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、设计题目石墨烯-硅阵列复合体系的光吸收特性的研究 学生姓名 学 号 专业班级 指导教师 院系名称 年 月 日目录中文摘要1英文摘要21 绪论31.1 研究背景及意义31.1.1 研究背景31.1.2 研究意义31.2 表面等离子体激元介绍41.2.1 表面等离子体激元的色散41.2.2 表面等离子体激元的激发61.2.3 表面等离子体共振(Surface Plasmon Resonance,SPR)71.2.4 表面等离子体的应用81.3 数值模拟方法81.3.1麦克斯韦方程组和边界条件81.3.2 数值模拟方法92石墨烯-硅阵列复合体系的光吸收特性的研究112.1 石墨烯电磁模型112.1.
2、1 石墨烯电导率112.1.2 石墨烯介电常数122.2 石墨烯-硅阵列复合体系的光吸收特性152.2.1 石墨烯-硅阵列结构152.2.2 石墨烯-硅阵列一维矩形光栅的光吸收特性152.2.2.1 光栅调制深度改变对光栅反射谱的影响172.2.2.3 占空比改变对光栅反射谱的影响193石墨烯硅阵列其他光栅结构的光吸收特性研究213.1 石墨烯-硅梯形光栅结构的光吸收特性213.1.1梯形光栅结构213.1.2 石墨烯-硅梯形光栅的光吸收特性213.1.3 石墨烯-硅梯形光栅结构参数对反射谱的影响233.1.3.1 调制深度改变对光栅反射谱的影响233.1.3.2 光栅周期改变对光栅反射谱的影
3、响243.2 石墨烯-硅三角形光栅结构的光吸收特性253.2.1 三角形光栅结构253.2.2 石墨烯-硅三角形光栅的光吸收特性253.2.3 石墨烯-硅三角形光栅结构参数对反射谱的影响273.2.3.1 调制深度改变对光栅反射谱的影响273.2.3.2 光栅周期改变对光栅反射谱的影响284结论29致谢31参考文献32石墨烯-硅阵列复合体系的光吸收特性的研究摘要:石墨烯以其独特的光学与电学特性性能而在新材料在材料科学、化学、微电子等领域而得以被广泛地应用在电子工业上,。表面等离子体激元是金属表面电子集体振荡产生的局域电磁波,具有近场局域增强和空间高度局域的特性。近些年来,基于石墨烯符合材料体系
4、的光学特性一直是前言光学的研究热点能也吸并受到引了强烈关注,并且石墨烯制成的光学纳米器件也具有很好的应用前景。表面等离子体激元有近场局域增强和空间高度局域的特性,因而在制造纳米光学器件有很高的应用前景。本文理论分析并计算了石墨烯材料的介电常数随波长的变化关系,采用电磁波的有限元算法系统地研究了用石墨烯薄膜-硅阵列的复合体系的光吸收特性。具体研究了硅阵列光栅高度、光栅周期、占空比等因素对体系反射谱的影响,并在此基础上对比了矩形、梯形光栅、三角形光栅光吸收特性的差异,可以看出不同光栅结构对光吸收的影响。上述研究成果将为太阳能电池、高灵敏度光电探测器及半导体发光器件的设计与制备提供重要的理论依据。关
5、键词:石墨烯,-硅阵列,表面等离子体,光栅,反射谱Abstract: Graphene is widely used in the area of materials science, chemistry and microelectronics electronic industry for its unique optical and electrionic characteristics,. Surface plasmon polaritons (SPs), as a kind of collective electron oscillation, can obtain greatly
6、enhanced localized electric field. in rRecently, years, the optical properties of graphene based devices have always been the hot spot in advanced optics and electronics. also attracted intense attention, and nano optical devices made by grapheme also have a good application prospect.Surface plasmon
7、 polaritons, due to the collective electrons oscillation on the metal surface,demonstrates the characteristics of the strong field enhancement and confinement in near field,so it has great application prospect in subwavelength optics, data storage, luminous technology, microscopy and biophotonics. I
8、n this paper, we theoretically calculated the epsilon of graphene as a function of working wavelength and chemistry potential. Using finite element method (FEM), we systematically analyzed the influence of period, length and duty cycle of silicon grating as well as incident angle on the reflectance
9、spectrum of graphene-silicon grating regime. Through calculation, we found By adjusting the grating height, grating constant and duty ratio ,we can see these factors influence the grating reflection spectrum,and by changing the grating structure, comparison of rectangular grating, trapeziform gratin
10、g and triangle grating array system,we can see effects of different grating structure ondemonstrates the better light absorption and SPP excitation capability compared to rectangle one. Our research results will provide the helpful theoretical basis for many applications such as solar cell, high sen
11、sitivity photodetctor, etc.Keywords:The array of gGraphene-silicon array; sSurface plasmon; Gratinggrating; The reflectanceion spectrum. 1绪论1.1 研究背景及意义1.1.1 研究背景石墨烯是世界上已知的最薄且最坚硬的纳米材料,它是由单层碳原子组成的六角蜂巢状的二维平面材料,由于因其具有独特的电子结构,所以在电子工业上而展现了其独特的特色电学特性【】。近些年来,石墨烯所展现出的独特的光学特性能也引起了人们强烈的关注。比如,实验上已经证实了石墨烯有助于可用于实
12、现加工宽频带的光学偏振器和超高速的光学调制器。石墨烯的电导率可影响到边界条件,因而常见的光学波导表面可覆盖石墨烯可引起强偏振。石墨烯的电导率可通过改变其化学势来快速调制。当石墨烯化学势高过一半的光子能量的一半时,带内跃迁占优势,石墨烯可表现出金属特性。因而,可利用横磁(TM)波在石墨烯表面可支持横磁波偏振激发表面等离子体激元(suface plasmom polaritions, SPPs)。与金属激发表面等离子体激元相比, 石墨烯具有其独特的性能:第一,在远红外区石墨烯激发的表面等离子体激元被紧紧束缚在表面且有效折射率与金属相比大的多【】;第二,石墨烯激发的等离子体激元的阻尼吸收损失损耗与比
13、普通金属相比低,因而表面等离基元具有较大的传播长度长;第三,石墨烯激发的等离子体激元可以通过外加电场,磁场或门电压来动态调制调控。表面等离子体激元的激发需要同时满足能量和动量守恒。表面等离子体激元不能由入射光直接来激发。常用的激发方式有:棱镜耦合、波导耦合、光栅耦合,除此之外,利用近场光学显微镜,金属表面的缺陷结构等都可以激发表面等离子体激元。1.1.2 研究意义石墨烯本质上是零能带半导体,因而在纳米电子学应用上很有前景。石墨烯的传输电子输运特性和(如:电导率)可以通过电场、磁场或化合物参杂等多种手段化合物来调谐调控,这样可以可以制出得到各种多种性能优良的电子器件。电子器件的线路电路会随着使用
14、而发热,这产生的焦耳热制约了会对器件性能与工作稳定性的运作产生较大的影响,而用光子代替电子具有很多优势,如不会产生大量热回路则可有效避免发热带来的种种弊端。但是这也要求一般要实现光子在纳米尺度的光子电路需在纳米数量级内控制光子中传输,这就要求解决两点问题要求:一是光学器件的大小微型化,这便于纳米应用和集成;二是在纳米尺度下控制光场,实现在纳米尺度内的聚焦、变换、耦合、折射、传导和复用,以及实现高准直、超衍射的新型光源和各种纳米光子学器件【】。表面等离子体激元,由于其具有空间衍射受限、场强高度局域等特性,可以实现突破衍射极限的光传输,因而基于表面等离子激元的光子器件尺寸可以缩小到纳米量级,这也为
15、有望解决这些难题亚波长光子回路的实现提供了可能。表面等离子体激元对电磁波在亚波长尺度的约束和局域特性,可以突破衍射极限,可将光子器件尺寸缩小到纳米量级。通过设计和优化亚波长金属结构控制表面等离子体波,可实现对光的位相和方向的有效调控。通过=由于石墨烯薄膜的厚度仅为单原子尺寸,因而基于石墨烯的的独特性能而激发的表面等离子体光学器件可实现超小尺度的高度集成,且基于石墨烯体系的表面等离子体可通过外加电、磁场等方式进行灵活调制有许多优势,从而可以制造出理想的因而在新型高性能纳米光子学器件的应用中具有广阔的应用前景。所以,研究石墨烯的光学性能在科研和实际生活中具有重要意义语言文字需要用心组织。1.2 表
16、面等离子体激元介绍1.2.1 表面等离子体激元的色散表面等离子体激元(Surface Plasmon Polaritons, SPPs)是光和金属表面的自由电子相互作用引起的一种电磁波模式,也可以说是在局域的金属表面的一种自由电子和光子相互作用形成的混合激发态【】,电磁波和金属表面的电子耦合,电子在金属/电介质界面上作集体振荡,它是一种表面波,其能量沿着金属的表面传播,垂直于金属表面的方向能量是指数衰减的。为揭示SPPs的存在条件与性质,我们可写出空间的电磁场分布,如图1.2.1,Y=0为两种物质的分界面,Y>0的上部分为相对介电常数为d的各向同性电介质材料,d为大于零的正实数;Y<
17、;0的下部分为相对介电常数为m的各向同性金属,一般m(re)<0,|m(re)| m(im)。图1.2.1 电介质/金属表面产生SPPs先考虑TM偏振(磁场垂直xy平面),则:Hzd=Aexp(-dy)expi(kx-wt)Hzm=Aexp-myexpikx-wt其中,k2-d2=k02d,k2-m2=k02m。由边界条件得:d/m=-d/m。计算得:kspp=k0(md)/(m+d)而对于TE偏振,计算无解,即TE偏振不能激发表面等离子体。可以看出,激发表面等离子体激元需要满足:第一,要使电磁场在金属表面高度局域化,则d和m都应该为正值,则由上式可得出d和m互为异号,所以要求分界面两侧
18、中必须有一负的介电常数,金属介电常数就是负数;第二,要能使得表面等离子体波能够沿着金属表面传播,kspp则为实数,这就要求d + m <0。在光频区,m<0,|m|1,有|m+d|<|m|,所以kspp>k0。图1.2.2为表面等离子体激元的色散关系曲线。图1.2.2 Dispersion relation of SPPs由推导知可见,表面等离子体的波矢量大于入射波的波矢量,因而不能用入射光波来直接激发表面等离子体激元。表面等离子体激元的性质:一、在垂直于界面的方向的场强呈指数衰减且只能发生在介电常数(实部)符号相反(即金属和介质)的界面两侧;二、有
19、很高的局域场增强效应;三、能够突破衍射极限具有很高的局域场增强效应。1.2.2 表面等离子体激元的激发方式由上节讨论可知知,表面等离子体不能由入射波直接激发。为了激励表面等离子体激元,需要引入一些特殊的结构达到波矢匹配,常用的结构有以下几种【】:一种棱镜耦合是Kretschmann结构【6】:,金属薄膜与棱镜结合,入射波的入射角大于棱镜与空气的全反射角,然后用棱镜的折射率来波矢补偿来实现波矢匹配,从而激发表面等离子体;另一种棱镜耦合是Otto结构【7】,棱镜和金属薄膜间有很小的空气隙,光波适合的条件入射则能激发表面等离子体激元。如下图1.2.3。图1.2.3(a)Otto模型 和(b)Kret
20、schmann模型结构采用波导棱镜耦合结构:利用高折射率棱镜全反射波导边界处产生的大波矢消逝倏逝波在金属膜表面激发表面等离子体波,使波导中的入射光场的能量耦合到表面等离子体波中。波导两侧光波是消逝倏逝波,当在波导的某个位置镀上金属,这样棱镜耦合法激发表面等离子体波对入射角度极为敏感,仅当以该入射角光波的水平方向波矢与表面等离子体的波矢相匹配时通过这个区域的时候就能够才能激发出表面等离子体波【8】。采用衍射光栅结构:利用光栅引入一个额外的波矢量的增量实现波矢量的匹配。这是目前研究的热点和重点,常用的光栅主要是一维光栅,二维光栅以及孔阵列结构和颗粒阵列【8】。当然,还有其他一些方式,在这里就不一一
21、列举了。本课题采用的是衍射光栅耦合的方式。以一维矩形光栅为例,如图1.2.4所示,金属表面上有光栅结构,通过光入射到光栅上产生的衍射场来实现波矢匹配。二维金属周期性结构的波矢匹配方程【9】:ksp=wcnsinuxyp±p2ux±q2uy(1.2.1)其中,w为频率,为入射角,p与偏振有关,当入射为TM偏振是p=1,入射为图1.2.4 一维衍射光栅所有图注必须直接出现在图的下方。s偏振时,p=0,n为金属相邻的介质折射率,uxy为光波矢沿光栅表面平行的单位矢量,ux和uy为周期在x,y方向的单位倒格矢,为光栅常数光栅周期,p,q为对应不同衍射方向的整数。图1.2.4 一维衍
22、射光栅当波矢匹配条件满足时,表面等离子体可以被有效的激发,表现为在反射光强度中出现极小值。表面等离子体激元的性质:一、在垂直于界面的方向的场强呈指数衰减且只能发生在介电常数(实部)符号相反(即金属和介质)的界面两侧;二、有很高的局域场增强效应;三、能够突破衍射极限具有很高的局域场增强效应。1.2.3 表面等离子体共振(Surface Plasmon Resonance,SPR)入射波入射到石墨烯-硅光栅结构,有两种光响应:一种是入射波直接被反射和透射,但是我们设计结构的基底较厚,可以不考虑透射,这种响应方式为连续态响应;二是衍射波激发表面等离子体,部分入射波转换为表面等离子体波,光耦合进表面等
23、离子体中。在表面等离子体波传播过程中,部分被石墨烯吸收,部分被反射,这种光响应为分离态响应【10】。我们可由菲涅耳公式:n1sin1=n2sin2知,当入射光从光密介质射入光疏介质,可以产生全反射。从波动光学看,入射光到达界面不是直接产生反射光,而是先透过光疏介质约一个波长长度,然后再返回光密介质。透过侵入光疏介质的波称为消逝倏逝波。当表面等离子波可以发生共振被激发时,此时,入射光与将全部耦合到表面等离子体耦合中,反射光强将会大大急剧减少降低,这种现象被称为表面等离子体共振。 利用表面等离子体共振对环境介质十分敏感和局域电场高度增强的特性,是能够探测金属表面分子相互作用的光电现象其在生化传感、
24、光电探测等领域具有众多应用。光的反射强度下降在表面等离子体共振角位置,共振角对折射率变化非常敏感。因而,表面等离子体共振可用来探测表面折射率变化;共振角和共振波长与金属表面性质有关,在金属薄膜表面附着被测物引起金属表面折射率变化,使得共振信号改变,从而达到检测目的。现在,表面等离子体共振被广泛用于生化检测。1.2.4 表面等离子体的应用通过改变金属表面的结构,表面等离子体的特性就不断得到体现,对发展新型光学设备有重要作用。表面等离子体技术在亚波长光学,数据存储,发光技术,显微镜和生物光子学有重要影响【11】。研究表明,纳米尺度等离子体激元共振可以是局域光场强度提高35个数量级【12】,2008
25、 年6 月, 国外首次报道了S. Kim 等人用表面等离子体增强光场效应, 直接使用普通的fs激光振荡器与Ar原子相互作用获得了极紫外波段高次谐波的实验结果【13】,借助这种光场增强效应,可使许多场强物理研究变得简单。表面等离子体共振技术由瑞典科学家Liedberg于1983 年首次用于IgG抗体与其抗原相互作用的测定【14】,之后, 该技术被引入生物传感器领域并迅速渗透到基础生命科学研究中【15】,光在纳米尺度的特殊能力能应用到小生物分子精密探测、高分辨率显微镜以及更加有效的癌症治疗方案【16】。在光刻技术,因为存在衍射极限,所以无法用普通的掩模在可见光波段曝光得到小的结构,而在实际工艺中,
26、为了克服衍射极限,一般采用照明术、移相掩模技术、邻近效应矫正等技术【17】。但实现的工艺都比较复杂,而支持表面等离子体的金属掩模就可以轻易的克服衍射极限,达到亚波长分辨率。总之,表面等离子体激元可应用于制作各种表面等离子体元器件,也用于制造纳米波导、表面等离子体光子芯片、调制器、耦合器等方向。1.3 数值模拟电磁数值计算方法简介1.3.1麦克斯韦方程组和边界条件描述电场现象的基本物理量有电场强度E,磁感应强度B,电位移矢量D和磁场强度H。用麦克斯韦方程组合电荷守来描述电磁波的基本规律:×E=-Bt×H=-Dt+JB=0D=J+t=0所有公式全部用mathtype统一编制,统
27、一编号。其中,为电荷密度,J为电流密度。在各向同性介质中:Dr=rErBr=rHrJr=rEr其中,为介电常数,为磁导率,为电导率。在两介质的分界面上,可得边界关系为:en×E2-E1=0en×H2-H1=enD2-D1=enB2-B1=0其中,代表自由电荷密度,代表自由电流密度。1.3.2 数值模拟方法研究电磁场的方法可以是数值仿真,通过进行数值模拟,理论模型可以验证,然后对实验条件进行合理设计,电磁场的模拟方式很多,目前大多用的有:有限元法、严格耦合波法、传输矩阵法、时域有限差分法等【18】。其中按求解方法又可以分为时域和频域两类,计算时域的有时域有限差分法等,计算频域
28、的有有限元法,频域有限差分法,传输矩阵法等等。而频域技术发展早于时域技术,相对而言更成熟一些。 以前我们研究的都是传统光学,用经典光学理论来解释,但是在亚波长金属结构中,表面等离子体的传播问题用经典光学理论解释已经不再适用了。但是表面等离子体传播问题研究的是还是电磁波的散射问题,所以麦克斯韦方程组仍然适用于表面等离子体波,所以仍然要从研究 麦克斯韦方程组出发来分析研究 结构中的光传播。时域有限差分法(Finite Difference Time-Domain,FDTD)是一种常见的电磁场时域内计算方法,时域有限差分方法是直接把时域麦克斯韦方程组中的场的微分式的旋度
29、方程差分化,可以获得有限差分方程的场分量,从而逐步求解空间电磁场在时间上的变化【18】。在差分网格中,只有相邻的场分量(电场分量或者磁场分量)和上一个时间点上场的大小决定了该点上每一网格上的场分量,每个时间点上的电场和磁场伴随着时间点的前进,就可以直接仿真出电磁波在用在物体上并且和物体之间的发生的相互作用过程【18】,得到电磁场时域的数值,然后用清晰的物理图像就可以展示出来。对时域进行傅里叶变换就可以得到频域信息。有限元方法(Finite Element Method,FEM)是一种数学上在微分方程中近似求解数学物理方程中的边值问题的数值计算的方法【19】:原理是将求解的空
30、间划分成有限个单元,用有限个子域来代替整个连续区域,再在每个子域上都构造子域基函数,用含有未知系数的简单插值函数来表示在子域上的未知函数,所以现在可以用有限个自由度的问题替代原来具有无限个自由度的边值问题,也就用有限数目的未知系数去近似整个系统的解,该解法就是全部消除微分方程,将微分方程转化为代数方程组;或者将复杂的偏微分方程改写为常微分方程来近似,最后用标准的数值方法(欧拉法,龙格库塔法等)求解这个有限元方程,来得到原来边值问题的近似解。本文采用的就是有限元法。由于有限元方法对单频点的数值计算具有计算效率高、网格剖分灵活、收敛速度快等优势。本文的数值计算采用的是电磁波场的有限元方法。时域有限
31、差法有一定的缺陷,所以需要用更复杂的理论对其进行修正,精度不高,而且网格无法无限制的增加,在又细又薄的介质材料中不适用,如本文中石墨烯层厚度为2nm,相对于空气层(500nm)和基质层(1000nm)很小。如果网格的尺寸比细薄结构本身整体尺寸还要大,若仍然想采用网格来拟和这种细薄结构除非缩小网格大小,但会导致消耗更多内存,效率低;时域有限差法用的是规则网格,容易产生网格,但是不适合复杂几何图形,因而选择有限元法本文使用的是COMSOL Multiphysics 4.4。2石墨烯-硅阵列复合体系的光吸收特性的研究2.1 石墨烯电磁模型2.1.1 石墨烯电导率图2.1.1是石墨烯的平面结构,石墨烯
32、(Graphene)是由一层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子构成的一种二维碳材料。图2.1.1 石墨烯平面结构石墨烯的电导率可由久保公式得【20】:c=je2-j-1h2×1-j-10×fd,c,T-fd-,c,Td-0fd-,c,T-fd,c,T-j-12-4h2d(2.1)上面公式中,是角频率,是能量,c是化学势,是弛豫时间(-1是散射率),-e是电子,h是约化普朗克常数,fd,c,T=(e-ckBT+1)-1是费米-狄拉克分布,kB是玻尔兹曼常数,T是温度。(2.1)式中,第一项是主要由带内跃迁导致,第二项则是由带间跃迁导致的。因而,当带内电子-光
33、子散射是主要因素时,电导率即为【21】:intra=ie2kBTh2(w+i-1)ckBT+2ln(exp-ckBT+1)当带间的电子跃迁占优势时,此时,hw,|c|kBT,(2.1)可化为下式,则电导率即为:inter=ie24hln2c-h(w+i-1)2c+h(w+i-1)(2.3)这里,在外界光场下,由于导带中的电子的费米能级远大于外界光场的光子能量,则只会有导带内的光吸收,从导带的带间跃迁被限制,因而带内跃迁占主导作用,且|c|kBT,则(2.2)式即为【22】:g=intra=ie2c2(w+i-1)(2.4)所以,(2.4)即是石墨烯的电导率表达式。2.1.2 石墨烯介电常数我们
34、可以把石墨烯视为厚度为的超薄薄膜,则可用取决厚度的介电常数式子g,eq()来表示。表面等离子体激元的在石墨烯上色散关系可以通过令石墨烯厚度趋于零来理解。注意并不是石墨烯的真实厚度,通常的单层石墨烯厚度约为0.33nm。此介电常数等式为【23】:g,eq=1+ig0/(k0)(2.5)(2.5)式中,g是石墨烯的表面电导率,可用(2.4)来表达,0(约为377)是空气阻抗,k0=2/,是入射波长。我们从前文知道,当石墨烯实部为负数时,表现为金属特性,可以激发表面等离子体,而且,只支持TM偏振。根据传统的波导理论,如图2.1.2所示,电场在双层石墨烯的不同区域可用下式表达:Ex=Aexp-khx-
35、b, b<x<+Bexpkgx-b+Cexp-kgx-a, a<x<bDexpkhx-a+Eexp-khx+a, -a<x<aFexpkgx+a+Gexp-kgx+b, -b<x<-aHexpkhx+b, -<x<-b(2.6)其中,kh=(2-hk02)1/2,kg=(2-g,eqk02)1/2,是表面等离子体的传播常数。AH是不同区域的振幅。通过边界条件知道,横向的电磁场在界面是连续的,当趋于零时,表面等离子体的色散关系可以解出:-kh±exp-khd-1=2ihk0/(0g)(2.7)假设两层石墨烯间的区域足够大,根据
36、对称,可以推出单层石墨烯的表面等离子体的波矢:kspp=k0h-(2h0g2)(2.8)通常取h=1,则:kspp2ik00g=2k0h2w0e2c+2k0h20e2ci(2.9)所以,表面等离子体的传播损失损耗与化学势成反比,kspp的实部随化学势的减少而增加。图2.1.2 双层石墨烯截面图联系由式(2.4)和(2.5),取典型的单层石墨烯厚度为0.33nm,取化学势为0.15ev,波长取5001500nm,弛豫时间为0.5ps时,用MATLAB可以可计算得出得到石墨烯介电常数关于对波长的依赖关系,如图2.1.2,为了图像更加明显,我们取0ev,0.15ev,0.30ev,图像如和2.1.3
37、所示。图2.1.2 石墨烯介电常数实部随波长的变化从图中像可以看出,随着化学势的增加,石墨烯介电常数的实部越来越小逐渐减小,在同一化学势固定的前提下,介电常数实部随波长的增加而减小,。这表明随着波长的增加,石墨烯金属特性愈发明显;而在同一化学势下将波长固定,石墨烯实部随波长化学势的增加而减少降低,这表明随着波长的增加,石墨烯金属特性愈发明显因此可以通过调节化学势的方法改变石墨烯的光学特性。图2.1.3 石墨烯介电常数实部随波长的变化由上图中绿线对应纵坐标恒为零,从图上可以看出见,在化学势为0.15ev条件下,石墨烯介电常数实部为零时,波长约为770nm;在化学势为0.30ev条件下,石墨烯介电
38、常数实部为零时,波长约为540nm。2.2 石墨烯-硅阵列复合体系的光吸收特性2.2.1 石墨烯-硅阵列结构用文字标出结构中各部分的材料成份。本文采用的是衍射补偿法,为了简便起见,先所研究的石墨烯-硅阵列模拟的一维矩形光栅,结构示意图如图2.2.1所示。图2.2.1 一维石墨烯-硅光栅阵列矩形光栅部分截面图上图中,石墨烯层很薄,为能看见,所以进行了放大。在该结构中,为了对下面的仿真网格划分方便,我们取结构顶层为多层石墨烯结构且其层厚度为2nm,衬底我们取硅,入射波长取850nm,化学势取0.15ev,空气阻抗为377。由前面的公式,可计算出此时石墨烯的电导率为=7.1518×10-9
39、+7.9299×10-6i,石墨烯的介电常数为=-0.7978+1.8234×10-4i,此时介电常数实部为负值,满足激发表面等离子体条件。我们用comsol进行优先于仿真计算中,取空气折射率取1,硅的折射率取3.66(硅的折射率随波长变化而变化,在波长为850nm下的折射率约为3.66)。下图2.2.2是结构的单元,其中单元的宽度,即上述石墨烯-硅阵列结构为一维周期性结构,计算过程中,光栅常数光栅周期周期取500nm,光栅高度取为800nm,衬底厚度取为1000nm如图2.2.2所示。2.2.2 石墨烯-硅阵列一维矩形光栅的光吸收特性利用上述结构参数,我们利用有限元方法分
40、别研究了不同角度入射条件下,结构中的电磁场分布特点,结果仿真结果如图2.2.3和图2.2.3下所示,其中,最上面是空气层,紧接着是薄层的石墨烯,下面则是硅柱和空气,最下面是基质。图2.2.3 正入射波时,结构表面的电场分布图2.2.4 不同入射角度对应的石墨烯层电场场强分布(a)正入射(b)入射角为18度(c)入射角为36度(d)入射角为54度(e)入射角为72度(f)入射角为90度计算上不可能实现!从上面几张图可看出,TM波入射为TM波时,在石墨烯层激发了表面等离子体,而且,随着角度的变化,激发现象不同,在石墨烯与硅接触面部分场强比未接触部分高。而从下图的反射系数对入射角度的变化关系图图可看
41、出,当入射角约为16度时,激发现象最为明显入射光耦合石墨烯-硅阵列体系的效率最高,近乎实现了0反射。图2.2.5 光栅反射率曲线如上图可见,入射角约为16度时,石墨烯与硅柱界面上激发的由于激发表面等离子体激元强度最大,部分入射光能量耦合进表面等离子体中,此后表面等离基元又将入射光的能量前向散射到硅阵列内部进而出现反射谱出现低峰的谷值,如上图。当入射光为共振角(即反射系数最低时对应的角度),入射光与表面等离子体波耦合。计算表面,利用石墨烯-硅阵列耦合体系在一定入射角的条件下可以实现入射光能量的100%完全捕获。2.2.2.1 光栅调制深度改变对光栅反射谱的影响上节模拟的是一维矩形光栅,但光栅高度
42、固定为800nm,下面研究光栅调制深度对光栅反射谱的影响。光栅高度从700nm1000nm,间隔为100nm,用comsol进行仿真,可得出不同调制深度下的反射系数,如下图。用百分比表示。图2.2.6 光栅深度分别为700nm,800nm,900nm,1000nm时对应的反射谱图2.2.7 光栅深度分别为800nm,810nm,820nm时对应的反射谱从上图可以看出反射谱的形态依赖于光栅的深度,每条反射曲线所对应的最佳共振角度都有所不同。每条反射曲线的第一共振峰随光栅高度的增大向小角度方向移动,光栅的调制深度会影响使得光栅表面的有效折射率发生变化,所以导致表面等离子体最佳共振角度偏移。图2.2
43、.7 光栅深度分别为800nm,810nm,820nm时对应的反射谱我们知道一般,共振深度是为共振谷底与伍兹奇异点的距离,半宽度即为反射率为共振深度一半时对应的角度范围。从上图可以看出,共振峰半角宽度随着光栅调制深度的增加而增大,这说明在入射光与表面等离子体耦合时能量损失增大,原因是光栅深度增大,石墨烯层与空气接触面积增大,导致增大了吸收面。光栅反射率最小值随着调制深度改变而改变。 将有利于实现降低光吸收对角度的敏感性,提高器件的宽角度吸收能力。2.2.2.2 光栅常数光栅周期改变对光反射谱的影响本节将研究光栅周期改变对反射谱的影响。计算过程中,我们固定光栅高度和占空比,调节改变光栅周期大小来
44、进行仿真,可得到了不同光栅常数光栅周期下的光反射谱。这里我们光栅常数光栅周期取400nm、500nm、600nm。我们前文知道平时讲话也没这种语法吧!,要想激发表面等离子体,需满足式(1.2.1), 对于一维光栅,光栅方程可得(1.2.1)即为:kspp=k0sin+m2(2.10)其中,m为整数,为入射角度,为光栅周期。由计算知,光栅常数光栅周期为450nm,500nm,550nm时都满足激发条件。此时,反射率曲线如下图:图2.2.8 光栅常数光栅周期分别为450nm、500nm、550nm时对应的反射谱尽管三种光栅常数光栅周期都能激发表面等离子体,但最佳共振角度有所偏移。从上图可以看出,光
45、栅常数光栅周期为500nm时,最佳共振角约为16度;而光栅常数光栅周期为450nm时,最佳共振角约41度和65度;而光栅常数光栅周期为550nm时,曲线相对比较均衡,最佳共振角约为50度。在能激发表面等离子体的前提下,光栅常数光栅周期的改变影响最佳共振角位置。2.2.2.3 占空比改变对光栅反射谱的影响所有图片全部用嵌入式格式,单倍行距。前面研究中我们占空比取0.5,下面研究占空比分别为0.2、0.5、0.8时对应的光栅反射谱变化。图2.2.9 占空比分别为0.2、0.5、0.8时对应的光栅反射谱这里的占空比为矩形硅柱所占体积与整体体积之比。从图中可以看出改变光栅占空比对反射谱影响很大:在占空
46、比比较小时,光栅的等效散射截面很小,因此几乎不能激发表面等离子体共振不太明显;而占空比为0.5时,可以看到吸收峰在入射角为16度左右附近明显的最低峰-共振角,此角度下表面等离子体共振明显,此时绝大部分入射光耦合进表面等离子波中,因而反射率接近零;在较大占空比时,也有明显共振角,且角度接近70度。大致可以看出总体来说,随着占空比的减小,共振角也在减小向小角度方向移动;随后,当占空比继续减小时,表面等离子体共振减弱并直至消失,物理模型演变为全反射占主导平面结构的菲涅尔反射。3石墨烯梯形硅阵列其他光栅结构的光吸收特性研究3.1 石墨烯-硅梯形光栅结构的光吸收特性3.1.1梯形光栅结构如图3.1.1所
47、示,图中为一维梯形光栅结构单元,计算模型所用参数与所用条件与第二上章2.2.1节的一致,只是光栅结构的形状结构不同。图3.1.1 一维石墨烯-梯形硅光栅阵列结构单元示意图其中,空气折射率取1,硅的折射率取3.66(硅的折射率随波长变化而变化,在波长为850nm下的折射率约为3.66),石墨烯的介电常数为=-1.6962+0.0024i,石墨烯层厚度为2nm,衬底取硅,入射波长取850nm,化学势取2ev,空气阻抗为377。3.1.2 石墨烯-硅梯形光栅的光吸收特性如上节所述一样,表面等离子体只能由TM波激发,所以将设置入射场设置为磁场沿z轴,这样入射的即为TM波。计算过程中,上述石墨烯-硅阵列
48、结构为一维周期性结构,计算过程中,光栅周期取500nm,光栅高度为800nm,光栅顶端与底部的占空比分别为 补充计算时所用的参数。衬底厚度为1000nm。首先,我们研究了不同入射角条件下,结构的反射特性,如图 3.1.2和图 3.1.3。图3.1.2 梯形硅阵列光栅结构表面电场场强分布图3.1.3 梯形硅阵列光栅结构,石墨烯层的电场场强分布图。(a)正入射(b)入射角18度(c)入射角36度(d)入射角54度(e)入射角72度(f)入射角90用88度近似代替。度从上图可看出,表面等离子体在石墨烯层激发,且激发现象明显。在石墨烯与硅柱接触面的两侧场强较高,而在石墨烯与硅柱接触的区域没有激发表面等
49、离子体激元,与矩形光栅不同的是,矩形光栅激发的表面等离子体分布在整个石墨烯层,而梯形光栅是石墨烯与硅柱接触的部分不产生表面等离子体。这种差异主要是由于基于严格耦合波法解出的耦合波方程不同,是由于硅柱顶端边角增大光栅结构不同导致激发的表面等离子体波仅向两侧散射造成的。下图3.1.4是梯形光栅的反射率曲线。图3.1.4 梯形光栅反射率从上图可以看出,在小角度入射时(小于20度),光栅反射率较低,说明部分入射光能量耦合进表面等离子体中,随着角度的增大,反射率增大表明表面等离子体共振的光能量损失越大。可见,梯形光栅适用于小角度入射波。反射率基本与入射角成正比呈相关关系,随着入射角增大,反射系数也逐渐增
50、大。3.1.3 石墨烯-硅梯形光栅结构参数对反射谱的影响3.1.3.1 调制硅阵列深度改变对光栅反射谱的影响由前文知,调制深度的改变会改变反射谱形态,为了看的清楚,调制深度改变从800nm830nm,间隔为10nm,图形如下:图3.1.5 不同调制深度下的硅阵列光栅-石墨烯结构反射谱从上图可以看出,光栅调制深度的改变对图像波形的影响较小,在这几种调制深度下,反射率低值基本都分布在010度内。与矩形光栅相比(图2.2.7),梯形光栅更“稳定”。3.1.3.2 光栅常数光栅周期改变对光栅反射谱的影响下图是光栅常数光栅周期分别为450nm、500nm、550nm下的反射谱。图3.1.6 不同光栅常数
51、光栅周期下的光栅反射谱从上图可看出,光栅周期为450nm时,曲线始终在其它他两条之下,在同角度入射下,反射率最低,说明入射波与表面等离子体耦合的能量损失低。光栅常数光栅周期为450nm,550nm的梯形光栅具有整体光吸收效果比光栅常数光栅周期为500nm的光栅好更高光吸收效率。且光栅周期为450nm时,可在0-40°入射角范围内获得均值小于1%的高吸收效率。3.2 石墨烯-硅三角形光栅结构的光吸收特性3.2.1 三角形光栅结构如图3.2.1为一维三角形光栅结构图。图3.2.1 一维三角形光栅结构部分截面计算过程中,空气折射率取1,硅的折射率取3.66(硅的折射率随波长变化而变化,在波
52、长为850nm下的折射率约为3.66),石墨烯的介电常数为=-1.6962+0.0024i,石墨烯层厚度为2nm,衬底取硅,入射波长取850nm,化学势取2ev,空气阻抗为377。光栅高度为800nm,三角形对阵列底部的占空比为1:1。3.2.2 石墨烯-硅三角形光栅的光吸收特性利用有限元算法,下图给出了是一维三角形光栅结构的表面场强和不同入射角下石墨烯层的场强分布图。图3.2.1 一维三角形光栅表面电场场强分布图3.2.2 不同入射角下,石墨烯层电场场强(a)正入射(b)18度(c)36度(d)54度(e)72度(f)90度从上图可看出,在石墨烯全区域都激发了表面等离子体且激发状态强度随入射
53、角改变而改变降低;,直至入射角接近90度时不明显,几乎不能激发表明等离子体。图3.2.3 三角形光栅反射率从上图3.2.3可以看出,三角形光栅反射率与入射角成正比,随入射角增大,反射率增大。3.2.3 石墨烯-硅三角形光栅结构参数对反射谱的影响3.2.3.1 调制硅阵列深度改变对光栅反射谱的影响下图为硅阵列调制高度分别为800nm、810nm、820nm、830nm时,石墨烯-三角形硅光栅对应的反射谱。图3.3.4 不同调制深度下的三角形光栅反射谱从上图可以看出,小范围的光栅调制深度对反射谱的影响很小,在40度之前,反射谱会因调制深度不同有些变化,但40度后,曲线基本重合。并且,在40度之前,
54、反射率会随着调制深度的增加而减小。3.2.3.2 光栅常数光栅周期改变对光栅反射谱的影响下图为光栅常数光栅周期分别为450nm、500nm、550nm时三角形光栅对应的反射谱。图3.3.5 不同光栅常数光栅周期下的三角形光栅反射谱从上图可看出,在一定光栅常数和入射角度范围内,反射率与光栅常数光栅周期成反比,光栅常数光栅周期越大,反射率曲线越低。 石墨烯-硅阵列组成系统的结构参数不同结构的光栅,对用来结构表面激发表面等离子体并及产生的反射谱具有很大影响差异。,我们可以通过优化、改进这些结构参数可以制出我们需要的提升期间的光吸收能力进而获得高性能的光电器件,具有重要的在应用上很有意义价值。4论文小
55、结结论 本文在理论基础上分析得到了解石墨烯的电导率及介电常数的影响因素,计算了其对化学势及波长的依赖关系。设定特定波长(发现850nm)求出确定的石墨烯介电常数,使得石墨烯表现出金属特性,并利用有限元方法系统地研究了石墨烯和硅组成光的栅结构的来激发表面等离子体激发与光吸收特性。通过comsol仿真结果,得出光栅结构的反射谱,进而了解到石墨烯-硅阵列复合体系的光吸收特性。具体的研究内容与研究结果如下:本文第一章主要介绍了研究背景及意义,并着重介绍了表面等离子体激元的色散关系、激发方式、应用前景及表面等离子体共振,还用一维矩形光栅例子介绍了严格耦合波法。本文第二章主要介绍了石墨烯的电磁模型,在久保
56、公式基础上得出石墨烯的电导率和介电常数的计算公式,分析了化学势、入射波长对石墨烯介电常数的影响;用石墨烯和硅组成的一维矩形光栅激发出了表面等离子体,得出得到了光栅结构的反射谱;研究了调节-光栅的调制深度、光栅常数光栅周期、占空比这些等因素来观察这些因素对光吸收的影响。本文第三章重点主要介绍研究了石墨烯和梯形及三角形硅组成的另外两种光栅结构(一维梯形光栅、一维三角形光栅)激发表面等离子的激发特性及结构的光吸收特性,并通过改变调制研究了光栅深度和光栅常数光栅周期来观察这些等因素的影响。 对比图2.2.4、图3.1.3、图3.2.2,从三张石墨烯层电场强度可以看出,不同光栅激发的表面等离子体存在区域不同,矩形光栅和三角形光栅激发的表面等离子体在石墨烯全区域都有,而梯形光栅则只在未接触区域激发,且矩形光栅激发的等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基于离散选择实验的肿瘤化疗患者静脉通路装置选择偏好研究
- 单箱多室变截面波形钢腹板组合梁桥剪切效应研究
- 董仲舒“五常”思想内在逻辑研究
- 农膜压板企业数字化转型与智慧升级战略研究报告
- 电子纱企业县域市场拓展与下沉战略研究报告
- 虚拟展览互动体验优化-全面剖析
- 预训练语言模型应用-全面剖析
- 学生情感分析与干预策略-全面剖析
- 数字化转型下的品牌重塑策略-第1篇-全面剖析
- 2024年浙江环质环境检测科技有限公司招聘考试真题
- 高楼遮光补偿协议书范本
- 母乳喂养知识培训课件下载
- 西安市曲江第三中学行政人员及教师招聘笔试真题2024
- 2025-2030中国竹纤维行业市场发展现状及竞争策略与投资前景研究报告
- 委托外包催收合同协议
- 2025-2030中国涂装行业市场深度分析及发展预测与投资策略研究报告
- 乳腺癌诊治指南与规范(2025年版)解读
- 银行系统招聘考试(经济、金融、会计)模拟试卷14
- 心理韧性在咨询中的重要性试题及答案
- 外研版(三起)(2024)三年级下册英语Unit 2 单元测试卷(含答案)
- 2025年全国普通话水平测试训练题库及答案
评论
0/150
提交评论