数值分析5用Jacobi迭代法和GaussSeidel迭代法求解线性方程组_第1页
数值分析5用Jacobi迭代法和GaussSeidel迭代法求解线性方程组_第2页
数值分析5用Jacobi迭代法和GaussSeidel迭代法求解线性方程组_第3页
数值分析5用Jacobi迭代法和GaussSeidel迭代法求解线性方程组_第4页
数值分析5用Jacobi迭代法和GaussSeidel迭代法求解线性方程组_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、作业六:分别编写用Jacobi迭代法和Gauss-Seidel迭代法求解线性方程组Ax=B的标准程序,并求下列方程组的解。可取初始向量 X(0) =(0,0,0);迭代终止条件|x(k+1)-x(k)|<=10e-6(1)8 -1 12 10 -11 1 -5x1x2x3=143(2)5 2 1-1 4 22 -3 10x1x2x3=-12203Jacobi迭代法:流程图开始判断b中的最大值有没有比误差大给x赋初值进行迭代求出x,弱到100次还没到,警告不收敛结束程序clear;clc;A=8,-1,1;2,10,01;1,1,-5;b=1;4;3;e=1e-6;x0=0;0;0'

2、;n=length(A);x=zeros(n,1);k=0;r=max(abs(b);while r>e for i=1:n d=A(i,i); if abs(d)<e warning('矩阵A输入有误'); return; end sum=0; for j=1:n if j=i sum=sum+A(i,j)*x0(j); end end x1(i)=(b(i)-sum)/A(i,i); end k=k+1; r=max(abs(x1-x0); x0=x1; fprintf('第%d次迭代:',k) fprintf('n与上次计算结果的距离:

3、%f n',r) disp(x1); if k>100 warning('不收敛'); endendx=x0;程序结果(1)(2) Gauss-Seidel迭代法:程序clear;clc;%A=8,-1,1;2,10,01;1,1,-5;%b=1;4;3;A=5,2,1;-1,4,2;2,-3,10;b=-12;20;3;m=size(A);if m(1)=m(2) error('矩阵A不是方阵');endn=length(b);%初始化N=0;%迭代次数L=zeros(n);%分解A=D+L+U,D是对角阵,L是下三角阵,U是上三角阵U=zeros(n);D=zeros(n);G=zeros(n);%G=-inv(D+L)*Ud=zeros(n,1);%d=inv(D+L)*bx=zeros(n,1);for i=1:n%初始化L和U for j=1:n if i<j L(i,j)=A(i,j); end if i>j U(i,j)=A(i,j); end endendfor i=1:n%初始化D D(i,i)=A(i,i);endG=-inv(D+L)*U;%初始化Gd=(D+L)b;%初始化d%迭代开始x1=x;x2=G*x+d;while norm(x2-

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论