版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第二章 物体的弹性第二章 物体的弹性第二章 物体的弹性掌握掌握描述物体弹性的基本概念:形变、应变、描述物体弹性的基本概念:形变、应变、应力、模量。应力、模量。理解理解应力与应变的关系应力与应变的关系 。了解了解骨骼的力学特性和生物材料的黏弹性。骨骼的力学特性和生物材料的黏弹性。教学基本要求教学基本要求第二章 物体的弹性物体形变物体形变形变定义:形变定义:物体在外力作用下发生形状和大物体在外力作用下发生形状和大小的改变。小的改变。形变类型:形变类型:从弹性体的恢复情况划分有弹性从弹性体的恢复情况划分有弹性形变、范性(塑性)形变。从形状变化情况形变、范性(塑性)形变。从形状变化情况划分有伸长、缩短
2、、切变、扭转、弯曲等形划分有伸长、缩短、切变、扭转、弯曲等形变。伸长和缩短合称线变。线变和切变是弹变。伸长和缩短合称线变。线变和切变是弹性形变的两种基本类型,其他形变实际上是性形变的两种基本类型,其他形变实际上是这两种形变的复合。这两种形变的复合。第二章 物体的弹性第一节第一节 线应变与正应力线应变与正应力一、线应变一、线应变 对一细长物体施加拉力F使之拉伸, 其伸长变化率称为线应变线应变: 0ll ll若物体被拉伸 0, 0, 0 0;若物体被压缩 0, 0, 0 0。(2-1)第二章 物体的弹性1.内力内力 物体内部任一横截面两边材料之间存在的一种相互作用力。2.张力张力 垂直于任一截面的
3、拉伸内力。3.压力压力 垂直于任一截面的相互挤压的内力。二、正应力二、正应力第二章 物体的弹性4. 正应力正应力 如果是均匀物体,则张力F与横截面面积S之比,称为该横截面上的正应力正应力,用表示: (2-2) 如果是物体受力不均匀或者内部材料不均匀的一般情况,可以取一个微小的面元,其面积为 dS,设这个面元上的张力为 dF ,则该面元上的正应力表示为(2-3) 正应力正应力分为张应力张应力( 0 0)与压应力压应力( 0 0).SF SFSFSddlim0 第二章 物体的弹性1.低碳钢正应力低碳钢正应力与线应变的关系与线应变的关系 从图上可将拉伸分为弹性、屈服、硬化和颈缩四个阶段:三、正应力与
4、线应变的关系三、正应力与线应变的关系(低碳钢、骨骼、主动脉)(低碳钢、骨骼、主动脉)第二章 物体的弹性弹性阶段弹性阶段 曲线中OA段,A点称为正比极限正比极限。B点的正应力叫做弹性极限。屈服阶段屈服阶段 过了C点是屈服阶段 ,这一阶段的最大正应力为屈服强度。硬化阶段硬化阶段 从D点开始是硬化阶段,只有加大正应力,才能使物体进一步伸长,此即材料的硬化;E点的正应力叫做强度极限;第二章 物体的弹性颈缩阶段颈缩阶段 过了E点是颈缩阶段 ;F点称为断裂点。拉伸时,断裂点的正应力称为材料的抗张强度抗张强度。压缩时,断裂点的正应力称为材料的抗压强度抗压强度。BF是材料的范性(塑性)范围范性(塑性)范围。
5、如果F点距B点较远,则这种材料能产生较大的范性形变,表示它具有展性展性。 如果F点距B点较近,则这种材料能产生较小的范性形变,材料表现为脆性脆性。 第二章 物体的弹性实验表明:在正比极限内,正应力与线应变成正比,即(2-4)Y Y称为杨氏模量杨氏模量。结合(2-1)和(2-2)式(2-5)即为胡克定律胡克定律 其中 Y lSFlllSFY 00/ lkllYSF 00lYSk 第二章 物体的弹性杨氏模量 Y 只与材料的性质有关,它反映材料抵抗线变的能力,其值越大物体越不容易变形。几种材料的杨氏模量见表材料材料低低碳碳钢钢铸铸铁铁花花岗岗岩岩铅铅骨骨/拉拉伸伸骨骨/压压缩缩木木材材腱腱 橡胶橡胶
6、血管血管杨氏模量杨氏模量Y 109Nm-21967850 17169100.020.001 0.0002第二章 物体的弹性2.骨作为一种弹性材料,在正比极限范围之内,骨作为一种弹性材料,在正比极限范围之内,它的正应力和线应变成正比关系它的正应力和线应变成正比关系 。 骨骼在被拉伸时会伸长、变细( 如人进行悬垂动作)。 骨骼在被压缩时(如举重)能够刺激骨的生长,促进骨折愈合;但压缩作用较大时能使骨缩短、变粗。 拉伸与压缩的极限应力分别为 134 MNm-2 与170MNm-2湿润而致密的成人四肢骨的正应力湿润而致密的成人四肢骨的正应力- -线线应变曲线应变曲线第二章 物体的弹性3.主动脉弹性组织
7、的正应力与线应变关系并不服主动脉弹性组织的正应力与线应变关系并不服从胡克定律,曲线没有直线部分。从胡克定律,曲线没有直线部分。 主动脉弹性组织的弹性极限十分接近断裂点,这说明只要它没有被拉断,在外力消失后都能恢复原状。弹性组织应变可达到 1.0, 这说明它可以伸长到原有长度的两倍,这一点和橡胶皮比较类似。 主动脉弹性组织的正应力主动脉弹性组织的正应力- -线应变曲线线应变曲线第二章 物体的弹性 例例2-1 如图所示,一根结构均匀的弹性杆,密度为 ,杨氏模量为Y Y 。将此杆竖直悬挂,使上端固定,下端自由。求杆中的应力和应变。解:解:设杆在悬挂时的长为 l,横截面积为 S。以悬挂点为原点向下作O
8、x轴,如图所示,计算坐标为x(0 xl )的横截面处的应力和应变。SF 由 得这个截面处的应力为:gxlSSgxl)()( 又因为 , Y YgxlY)( 所以这个截面处的应变为:第二章 物体的弹性例例2-2股骨是大腿中的主要骨骼。如果成年人股骨的最小截面积是 610-4 m 2,问受压负荷为多大时将发生碎裂?又假定直至碎裂前,应力 - 应变关系还是线性,试求发生碎裂时的应变。(抗压强度 =17 107 Nm-2)解:解:导致骨碎裂的作用力 根据骨的杨氏模量 Y= 0.9 1010 Nm-2,可求碎裂时的应变 74517 106 101.02 10 NFS %9 . 1019. 0109 .
9、01017107 Y 第二章 物体的弹性 平面弯曲是指物体具有一个纵向的对称面,所有外力的合力都集中在这个对称面里。 在两个支架上放置一横梁。当横梁受到一个垂直于轴线的横向压力 P 时,如图(b)所示,横梁发生弯曲。显然,凸出的一侧被拉伸,凹进的一侧被压缩。四、弯曲四、弯曲第二章 物体的弹性第二节第二节 切应变与切应力切应变与切应力一、切应变一、切应变 当物体两端同时受到反向平行的拉力 F 作用时会发生形变,如图所示,其内部与该截面平行的平面发生错位,使原来与这些截面正交的线段变得不再正交,这样的形变叫做切应变切应变。 发生错位的这些平面叫做剪切面,平行于这个平面的外力叫做剪切力。剪切的程度以
10、x/d比值来衡量,这一比值称为切应变():(2-6) g tdx 第二章 物体的弹性二、切应力二、切应力 弹性体发生切变时,任一剪切面两边材料之间存在相互作用并且大小相等的切向内力。通过弹性体内某一个面元的切应力为(2-8)SF SFSFSddlim0 当切向内力在上下底面上分布均匀时,剪切力 F 与截面积S之比称为切应力,又称为剪切应力。用 表示。(2-7)第二章 物体的弹性三、切应力与切应变的关系三、切应力与切应变的关系 实验证明,在一定的限度内,切应力与切应变成正比,这种正比关系叫做切变的胡克定律胡克定律。即: GG 上式中比例系数 G 称为切变模量切变模量,也叫刚性模量。结合(2-6)
11、和(2-8)式xSFddxSFG / (2-10)(2-9)与杨氏模量类似,切变模量也只与材料的性质有关,几种材料的切变模量见表 :第二章 物体的弹性 剪切作用时,人骨骼所能承受的剪切载荷比拉伸和压缩载荷都低。 骨骼的剪切破坏应力约等于54MNm-2。材料材料钨钨低碳低碳钢钢铜铜铸铁铸铁玻璃熔玻璃熔石英石英铝铝骨骨木木材材铅铅切变模量切变模量G 109Nm-2140784035302510106第二章 物体的弹性 若使圆柱体两端分别受到对中心轴的力矩,且方向相反,则圆柱体便会发生扭转现象。 如图所示,将结构均匀的圆杆下端固定,力矩作用其上端,圆杆一端相对于另一端的角位移称为扭转角,用表示。扭转
12、角与母线的倾斜角之间的关系为:四、扭转四、扭转 la (2-11)l为杆的半径, a为杆的长度。 第二章 物体的弹性实验证明,当圆杆发生微弱的扭转时,扭转角与扭转力矩M有如下的关系:其中G为材料的切变模量。由上式可见,在扭转角相同的条件下,扭转力矩M与杆的半径a 的四次方成正比。显然,杆的半径越大扭转越困难。由式(2-9)和(2-11)可知,外缘的切应力为(2-12) lGaM24 laG 结合(2-12)式,最大切应力为: (2-14)(2-13)3max2aM 第二章 物体的弹性 由于承担最大的切应力的是圆杆的外缘材料,并且从抗扭转性能来看,靠近中心轴的各层作用不大,因此常用空心管来代替实
13、心柱,这样既可以节省材料,又可以减轻重量。第二章 物体的弹性第三节第三节 体应变与体应力体应变与体应力一、体应变一、体应变 物体各部分在各个方向上受到同等压强时体积发生变化而形状不变,则体积变化 V 与原体积 之比称为体应变体应变,以 表示即(2-15)0VV 二、体应力二、体应力 物体在外力作用下发生体积变化时,如果物体是各向同性的,则其内部各个方向的截面积上都有同样大小的压应力,或者说具有同样的压强。因此,体应力可以用压强来表示。第二章 物体的弹性三、体应力与体应变的关系三、体应力与体应变的关系 在体积形变中,压强与体应变的比值称为体变体变模量模量,用K K表示:负号表示体积缩小时压强是增
14、加的。体变模量与压缩率压缩率k的关系为:(2-17)(2-16)VpVVVppK 00/ 01pVVKk 物质的k值越大,越易被压缩。第二章 物体的弹性下表是几种材料的体变模量下表是几种材料的体变模量材料材料钢钢铜铜铁铁铝铝玻璃熔玻璃熔石英石英水银水银水水乙醇乙醇体变模量体变模量K158 120807036252.20.929mN10 第二章 物体的弹性第四节第四节 骨的力学特性骨的力学特性一、骨骼的力学性质:一、骨骼的力学性质: 骨骼与肌肉力学是生物力学中的主要研究内容,研骨骼与肌肉力学是生物力学中的主要研究内容,研究骨折常用强度和刚度概念。究骨折常用强度和刚度概念。 1、强度、强度 载荷情
15、况下抗破坏能力。载荷情况下抗破坏能力。 2、刚度、刚度 载荷下的抗形变能力。载荷下的抗形变能力。 强度和刚度取决于骨的成分和结构。强度和刚度取决于骨的成分和结构。第二章 物体的弹性人体人体干、湿骨的断裂点和正比例关系干、湿骨的断裂点和正比例关系 左图为左图为干干骨拉伸骨拉伸实验曲线。实验曲线。 右图为润湿骨的右图为润湿骨的拉伸实验曲线。拉伸实验曲线。第二章 物体的弹性 与一般金属材料与一般金属材料不同,骨骼在不不同,骨骼在不同方向载荷作用同方向载荷作用下有不同的力学下有不同的力学性能性能(各向异性各向异性)。 图为人股骨标准图为人股骨标准试样在不同方向试样在不同方向拉伸时的刚度和拉伸时的刚度和
16、强度变化曲线。强度变化曲线。 二、骨骼不同方向的拉伸曲线二、骨骼不同方向的拉伸曲线第二章 物体的弹性1.骨组织在骨组织在拉伸拉伸载荷作用下的断裂机制主要是载荷作用下的断裂机制主要是骨单位间结合线的分离和骨单位的脱离。骨单位间结合线的分离和骨单位的脱离。临床上:拉伸骨折多见于松质骨。临床上:拉伸骨折多见于松质骨。骨骼的形变、破坏与其受力方式有关骨骼的形变、破坏与其受力方式有关。根据外。根据外力和外力矩的方向将骨骼受力分为力和外力矩的方向将骨骼受力分为拉伸拉伸、压缩、压缩、弯曲弯曲、扭转扭转、剪切和复合载荷六种。、剪切和复合载荷六种。第二章 物体的弹性2.骨骼最常承受的载荷是骨骼最常承受的载荷是压
17、缩压缩载荷。压缩载荷能够载荷。压缩载荷能够刺激骨的生长,促进骨折愈合,较大压缩载荷作刺激骨的生长,促进骨折愈合,较大压缩载荷作用能够使骨缩短和变粗。用能够使骨缩短和变粗。 拉伸与压缩的极限应力分别为:拉伸与压缩的极限应力分别为: 骨组织在压缩载荷作用下的破坏表现,主要是骨组织在压缩载荷作用下的破坏表现,主要是骨单位的骨单位的斜行劈裂斜行劈裂。人湿骨破坏的极限应力大于拉。人湿骨破坏的极限应力大于拉伸极限应力。伸极限应力。22170134mMNmMN第二章 物体的弹性 3.弯曲弯曲:骨骼受到载荷作用时,将发生弯曲效应。骨骼受到载荷作用时,将发生弯曲效应。 中性线凹侧面中性线凹侧面(载荷侧载荷侧)骨骼受骨骼受压缩压缩作用作用;在凸侧受在凸侧受拉拉伸伸作用。作用。距离距离应力应力。 第二章 物体的弹性 4.扭转扭转: 扭转扭转实际是实际是剪切剪切的表现,越靠近中心轴的层,的表现,越靠近中心轴的层,切切应变应变越小,越外层的切应变越大,弧越长。从抗扭越小,越外层的切应变越大,弧越长。从抗扭转性能来看,由于靠近中心轴的各层作用不大,因转性能来看,由于靠近中心轴的各层作用不大,因此常用此常用空心管空心管来代替来代替实心柱实心柱,既可以节省材料,又,既可以节省材料,又可以可以减轻重量减轻重量,同抗弯曲情况相似。,同抗弯曲情况相
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 排他性合作协议
- 运营隧道的养护与维修施工工艺隧道工艺标准系列之十五模板
- 婴幼儿护理技能培训课件
- 娱乐行业介绍
- 2026年工业锅炉运行培训试题及答案
- 2026年四川医疗卫生面试常见题型解析
- 2026年呼吸内科临床综合能力训练题及详细解答
- 2026年医患关系与纠纷处理能力试题含答案
- 2026年新疆油田稠油开发与处理工艺测试含答案
- 2026年股市熔断机制小测含答案
- 《药品包装用卡纸折叠纸盒》(T-CNPPA 2005-2018)
- 内蒙古呼和浩特市重点名校2025届物理高三上期末统考试题含解析
- 篮球馆硅PU施工合同
- GB/T 16288-2024塑料制品的标志
- 卡西欧图形计算器fx-9860GII SD软件说明书
- 电力工程施工组织措施
- 五年级数学上册计算题专项练习
- 人工智能赋能制造业的变革
- 腹腔镜下前列腺癌根治术护理查房课件
- 肛周脓肿的教学查房
- GB/T 11345-2023焊缝无损检测超声检测技术、检测等级和评定
评论
0/150
提交评论