2022届安徽省宿州第四中学中考数学四模试卷含解析_第1页
2022届安徽省宿州第四中学中考数学四模试卷含解析_第2页
2022届安徽省宿州第四中学中考数学四模试卷含解析_第3页
2022届安徽省宿州第四中学中考数学四模试卷含解析_第4页
2022届安徽省宿州第四中学中考数学四模试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1四个有理数1,2,0,3,其中最小的是( )A1 B2 C0 D32将一把直尺与一块直角三角板如图放置,如果,那么的度数为( ).ABCD3由五个相同的立方体搭成的几何体如图所示,则它的左视图是( )ABCD4如图,正六边形ABCDEF内

2、接于,M为EF的中点,连接DM,若的半径为2,则MD的长度为ABC2D15如图,矩形ABCD中,AB=3,AD=,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,此时恰好四边形AEHB为菱形,连接CH交FG于点M,则HM=()AB1CD6已知是二元一次方程组的解,则m+3n的值是( )A4B6C7D87下列运算正确的是()A5abab=4Ba6÷a2=a4CD(a2b)3=a5b38下面的统计图反映了我国最近十年间核电发电量的增长情况,根据统计图提供的信息,下列判断合理的是()A2011年我国的核电发电量占总发电量的比值约为1.5%B2006年我国的总发电量约为25000亿千

3、瓦时C2013年我国的核电发电量占总发电量的比值是2006年的2倍D我国的核电发电量从2008年开始突破1000亿千瓦时9若点A(2,),B(-3,),C(-1,)三点在抛物线的图象上,则、的大小关系是()ABCD10下列各式中,正确的是( )At5·t5 = 2t5 Bt4+t2 = t 6 Ct3·t4 = t12 Dt2·t3 = t5二、填空题(本大题共6个小题,每小题3分,共18分)11如图,正方形ABCD边长为3,连接AC,AE平分CAD,交BC的延长线于点E,FAAE,交CB延长线于点F,则EF的长为_12计算(a3)2÷(a2)3的结果等

4、于_13若点与点关于原点对称,则_14将函数y=3x+1的图象沿y轴向下平移2个单位长度,所得直线的函数表达式为_152018年5月18日,益阳新建西流湾大桥竣工通车,如图,从沅江A地到资阳B地有两条路线可走,从资阳B地到益阳火车站可经会龙山大桥或西流湾大桥或龙洲大桥到达,现让你随机选择一条从沅江A地出发经过资阳B地到达益阳火车站的行走路线,那么恰好选到经过西流湾大桥的路线的概率是_16计算:_三、解答题(共8题,共72分)17(8分)(1)2018+()118(8分)如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30

5、°. 已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由(说明:的计算结果精确到0.1米,参考数据:1.41,1.73,2.24,2.45)19(8分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角CED=60°,在离电线杆6米的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长(结果保留小数点后一位,参考数据:)20(8分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理

6、,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上求APB的度数;已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?21(8分)抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B求此抛物线的解析式;已知点D 在第四象限的抛物线上,求点D关于直线BC对称的点D的坐标;在(2)的条件下,连结BD,问在x轴上是否存在点P,使,若存在,请求出P点的坐标;若不存在,请说明理由.22(10分)RtABC中,ABC=90°,以AB

7、为直径作O交AC边于点D,E是边BC的中点,连接DE,OD(1)如图,求ODE的大小;(2)如图,连接OC交DE于点F,若OF=CF,求A的大小23(12分)已知,关于x的方程x2+2x-k=0有两个不相等的实数根(1)求k的取值范围;(2)若x1,x2是这个方程的两个实数根,求的值;(3)根据(2)的结果你能得出什么结论?24美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量如图,测得DAC=45°,DBC=65°若AB=132米,求观景亭D到南滨河路AC

8、的距离约为多少米?(结果精确到1米,参考数据:sin65°0.91,cos65°0.42,tan65°2.14)参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】解:1102,最小的是1故选D2、D【解析】根据三角形的一个外角等于与它不相邻的两个内角的和求出1,再根据两直线平行,同位角相等可得2=1【详解】如图,由三角形的外角性质得:1=90°+1=90°+58°=148°直尺的两边互相平行,2=1=148°故选D【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,

9、熟记性质是解题的关键3、D【解析】找到从正面看所得到的图形即可,注意所有看到的棱都应表现在主视图中【详解】解:从正面看第一层是二个正方形,第二层是左边一个正方形故选A【点睛】本题考查了简单组合体的三视图的知识,解题的关键是了解主视图是由主视方向看到的平面图形,属于基础题,难度不大4、A【解析】连接OM、OD、OF,由正六边形的性质和已知条件得出OMOD,OMEF,MFO=60°,由三角函数求出OM,再由勾股定理求出MD即可【详解】连接OM、OD、OF, 正六边形ABCDEF内接于O,M为EF的中点,OMOD,OMEF,MFO=60°,MOD=OMF=90°,OM=

10、OFsinMFO=2×=,MD=,故选A【点睛】本题考查了正多边形和圆、正六边形的性质、三角函数、勾股定理;熟练掌握正六边形的性质,由三角函数求出OM是解决问题的关键5、D【解析】由旋转的性质得到AB=BE,根据菱形的性质得到AE=AB,推出ABE是等边三角形,得到AB=3,AD=,根据三角函数的定义得到BAC=30°,求得ACBE,推出C在对角线AH上,得到A,C,H共线,于是得到结论【详解】如图,连接AC交BE于点O,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,AB=BE,四边形AEHB为菱形,AE=AB,AB=AE=BE,ABE是等边三角形,AB=3,AD

11、=,tanCAB=,BAC=30°,ACBE,C在对角线AH上,A,C,H共线,AO=OH=AB=,OC=BC=,COB=OBG=G=90°,四边形OBGM是矩形,OM=BG=BC=,HM=OHOM=,故选D【点睛】本题考查了旋转的性质,菱形的性质,等边三角形的判定与性质,解直角三角形的应用等,熟练掌握和灵活运用相关的知识是解题的关键.6、D【解析】分析:根据二元一次方程组的解,直接代入构成含有m、n的新方程组,解方程组求出m、n的值,代入即可求解.详解:根据题意,将代入,得:,+,得:m+3n=8,故选D点睛:此题主要考查了二元一次方程组的解,利用代入法求出未知参数是解题

12、关键,比较简单,是常考题型.7、B【解析】由整数指数幂和分式的运算的法则计算可得答案.【详解】A项, 根据单项式的减法法则可得:5ab-ab=4ab,故A项错误;B项, 根据“同底数幂相除,底数不变,指数相减”可得: a6÷a2=a4,故B项正确;C项,根据分式的加法法则可得:,故C项错误;D项, 根据 “积的乘方等于乘方的积” 可得:,故D项错误;故本题正确答案为B.【点睛】幂的运算法则:(1) 同底数幂的乘法: (m、n都是正整数)(2)幂的乘方:(m、n都是正整数)(3)积的乘方: (n是正整数)(4)同底数幂的除法:(a0,m、n都是正整数,且m>n)(5)零次幂:(a

13、0)(6) 负整数次幂: (a0, p是正整数).8、B【解析】由折线统计图和条形统计图对各选项逐一判断即可得【详解】解:A、2011年我国的核电发电量占总发电量的比值大于1.5%、小于2%,此选项错误;B、2006年我国的总发电量约为500÷2.0%25000亿千瓦时,此选项正确;C、2013年我国的核电发电量占总发电量的比值是2006年的显然不到2倍,此选项错误;D、我国的核电发电量从2012年开始突破1000亿千瓦时,此选项错误;故选:B【点睛】本题考查的是条形统计图和折线统计图的综合运用读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目

14、的数据;折线统计图表示的是事物的变化情况9、C【解析】首先求出二次函数的图象的对称轴x=2,且由a=10,可知其开口向上,然后由A(2,)中x=2,知最小,再由B(-3,),C(-1,)都在对称轴的左侧,而在对称轴的左侧,y随x得增大而减小,所以总结可得故选C点睛:此题主要考查了二次函数的图像与性质,解答此题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数的图象性质10、D【解析】选项A,根据同底数幂的乘法可得原式=t10;选项B,不是同类项,不能合并;选项C,根据同底数幂的乘法可得原式=t7;选项D,根据同底数幂的乘法可得原式=t5,四个选项中只有选项D正确,故选D.二、填空题(本大题

15、共6个小题,每小题3分,共18分)11、6【解析】利用正方形的性质和勾股定理可得AC的长,由角平分线的性质和平行线的性质可得CAE=E,易得CE=CA,由FAAE,可得FAC=F,易得CF=AC,可得EF的长【详解】解:四边形ABCD为正方形,且边长为3, AC=3, AE平分CAD, CAE=DAE,ADCE, DAE=E, CAE=E, CE=CA=3, FAAE,FAC+CAE=90°,F+E=90°, FAC=F, CF=AC=3,EF=CF+CE=3+3=612、1【解析】根据幂的乘方, 底数不变, 指数相乘; 同底数幂的除法, 底数不变, 指数相减进行计算即可.

16、【详解】解:原式=【点睛】本题主要考查幂的乘方和同底数幂的除法,熟记法则是解决本题的关键, 在计算中不要与其他法则相混淆. 幂的乘方, 底数不变,指数相乘; 同底数幂的除法, 底数不变, 指数相减.13、1【解析】点P(m,2)与点Q(3,n)关于原点对称,m=3,n=2,则(m+n)2018=(3+2)2018=1,故答案为114、y=3x-1【解析】y=3x+1的图象沿y轴向下平移2个单位长度,平移后所得图象对应的函数关系式为:y=3x+12,即y=3x1故答案为y=3x115、【解析】由题意可知一共有6种可能,经过西流湾大桥的路线有2种可能,根据概率公式计算即可【详解】解:由题意可知一共

17、有6种可能,经过西流湾大桥的路线有2种可能,所以恰好选到经过西流湾大桥的路线的概率=故答案为【点睛】本题考查的是用列表法或画树状图法求概率注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件注意概率=所求情况数与总情况数之比16、【解析】直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案【详解】原式故答案为【点睛】本题考查了实数运算,正确化简各数是解题的关键三、解答题(共8题,共72分)17、-1.【解析】直接利用负指数幂的性质以及算术平方根的性质分别化简得出答案【详解】原式=1+13=1【点睛】本题主要考查了实数运

18、算,正确化简各数是解题的关键18、(1)5.6(2)货物MNQP应挪走,理由见解析【解析】(1)如图,作ADBC于点DRtABD中, AD=ABsin45°=4在RtACD中,ACD=30°AC=2AD=4 即新传送带AC的长度约为5.6米 (2)结论:货物MNQP应挪走 在RtABD中,BD=ABcos45°=4 在RtACD中,CD=ACcos30°= CB=CDBD=PC=PBCB 42.1=1.92 货物MNQP应挪走19、5.7米【解析】试题分析:由题意,过点A作AHCD于H在RtACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt

19、CED中,求出CE的长试题解析:解:如答图,过点A作AHCD,垂足为H,由题意可知四边形ABDH为矩形,CAH=30°,AB=DH=1.5,BD=AH=6.在RtACH中,CH=AHtanCAH=6tan30°=6×,DH=1.5,CD=+1.5.在RtCDE中,CED=60°,CE=(米).答:拉线CE的长约为5.7米考点:1.解直角三角形的应用(仰角俯角问题);2.锐角三角函数定义;3.特殊角的三角函数值;4.矩形的判定和性质20、(1)30°;(2)海监船继续向正东方向航行是安全的【解析】(1)根据直角的性质和三角形的内角和求解;(2)过

20、点P作PHAB于点H,根据解直角三角形,求出点P到AB的距离,然后比较即可.【详解】解:(1)在APB中,PAB=30°,ABP=120°APB=180°-30°-120°=30°(2)过点P作PHAB于点H 在RtAPH中,PAH=30°,AH=PH在RtBPH中,PBH=30°,BH=PHAB=AH-BH=PH=50解得PH=2525,因此不会进入暗礁区,继续航行仍然安全.考点:解直角三角形21、(1)(2)(0,-1)(3)(1,0)(9,0)【解析】(1)将A(1,0)、C(0,3)两点坐标代入抛物线yax

21、2bx3a中,列方程组求a、b的值即可;(2)将点D(m,m1)代入(1)中的抛物线解析式,求m的值,再根据对称性求点D关于直线BC对称的点D'的坐标;(3)分两种情形过点C作CPBD,交x轴于P,则PCBCBD,连接BD,过点C作CPBD,交x轴于P,分别求出直线CP和直线CP的解析式即可解决问题【详解】解:(1)将A(1,0)、C(0,3)代入抛物线yax2bx3a中,得 ,解得 yx22x3;(2)将点D(m,m1)代入yx22x3中,得m22m3m1,解得m2或1,点D(m,m1)在第四象限,D(2,3),直线BC解析式为yx3,BCDBCO45°,CDCD2,OD3

22、21,点D关于直线BC对称的点D'(0,1);(3)存在满足条件的点P有两个过点C作CPBD,交x轴于P,则PCBCBD,直线BD解析式为y3x9,直线CP过点C,直线CP的解析式为y3x3,点P坐标(1,0),连接BD,过点C作CPBD,交x轴于P,PCBDBC,根据对称性可知DBCCBD,PCBCBD,直线BD的解析式为直线CP过点C,直线CP解析式为,P坐标为(9,0),综上所述,满足条件的点P坐标为(1,0)或(9,0)【点睛】本题考查了二次函数的综合运用关键是由已知条件求抛物线解析式,根据抛物线的对称性,直线BC的特殊性求点的坐标,学会分类讨论,不能漏解22、(1)ODE=90°;(2)A=45°.【解析】分析:()连接OE,BD,利用全等三角形的判定和性质解答即可; ()利用中位线的判

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论