版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若x,y满足约束条件且的最大值为,则a的取值范围是( )ABCD2下列判断错误的是( )A若随机变量服从正态分布,则B已知直线平面,直线平面,则“”是“”的充分不必要条件C若随机变量服从二项分布: , 则D是的充分不必要条件3记为数列的前项和
2、数列对任意的满足.若,则当取最小值时,等于( )A6B7C8D94已知函数,若方程恰有三个不相等的实根,则的取值范围为( )ABCD5已知数列满足:)若正整数使得成立,则( )A16B17C18D196在中,分别为角,的对边,若的面为,且,则()A1BCD7的展开式中的常数项为( )A60B240C80D1808已知集合,集合,则AB或CD9已知曲线且过定点,若且,则的最小值为( ).AB9C5D10设,则的值为( )ABCD11已知定义在上的函数满足,且在上是增函数,不等式对于恒成立,则的取值范围是ABCD12某大学计算机学院的薛教授在2019年人工智能方向招收了6名研究生.薛教授欲从人工智
3、能领域的语音识别、人脸识别,数据分析、机器学习、服务器开发五个方向展开研究,且每个方向均有研究生学习,其中刘泽同学学习人脸识别,则这6名研究生不同的分配方向共有( )A480种B360种C240种D120种二、填空题:本题共4小题,每小题5分,共20分。13已知是夹角为的两个单位向量,若,则与的夹角为_.14已知圆C:经过抛物线E:的焦点,则抛物线E的准线与圆C相交所得弦长是_.15在中, ,则_.16已知各项均为正数的等比数列的前项积为,(且),则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在平面直角坐标系中,已知椭圆的左、右顶点分别为、,焦距为2,直线与
4、椭圆交于两点(均异于椭圆的左、右顶点).当直线过椭圆的右焦点且垂直于轴时,四边形的面积为6.(1)求椭圆的标准方程;(2)设直线的斜率分别为.若,求证:直线过定点;若直线过椭圆的右焦点,试判断是否为定值,并说明理由.18(12分)设函数,其中()当为偶函数时,求函数的极值;()若函数在区间上有两个零点,求的取值范围19(12分)选修4-5:不等式选讲已知函数的最大值为3,其中(1)求的值;(2)若,求证:20(12分)已知,函数.(1)若函数在上为减函数,求实数的取值范围;(2)求证:对上的任意两个实数,总有成立.21(12分)在中,角,所对的边分别为,且求的值;设的平分线与边交于点,已知,求
5、的值.22(10分)记抛物线的焦点为,点在抛物线上,且直线的斜率为1,当直线过点时,.(1)求抛物线的方程;(2)若,直线与交于点,求直线的斜率.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】画出约束条件的可行域,利用目标函数的最值,判断a的范围即可【详解】作出约束条件表示的可行域,如图所示.因为的最大值为,所以在点处取得最大值,则,即.故选:A【点睛】本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键2D【解析】根据正态分布、空间中点线面的位置关系、充分条件与必要条件的判断、二项分布及不等式的
6、性质等知识,依次对四个选项加以分析判断,进而可求解.【详解】对于选项,若随机变量服从正态分布,根据正态分布曲线的对称性,有,故选项正确,不符合题意;对于选项,已知直线平面,直线平面,则当时一定有,充分性成立,而当时,不一定有,故必要性不成立,所以“”是“”的充分不必要条件,故选项正确,不符合题意;对于选项,若随机变量服从二项分布: , 则,故选项正确,不符合题意;对于选项,仅当时有,当时,不成立,故充分性不成立;若,仅当时有,当时,不成立,故必要性不成立.因而是的既不充分也不必要条件,故选项不正确,符合题意.故选:D【点睛】本题考查正态分布、空间中点线面的位置关系、充分条件与必要条件的判断、二
7、项分布及不等式的性质等知识,考查理解辨析能力与运算求解能力,属于基础题.3A【解析】先令,找出的关系,再令,得到的关系,从而可求出,然后令,可得,得出数列为等差数列,得,可求出取最小值.【详解】解法一:由,所以,由条件可得,对任意的,所以是等差数列,要使最小,由解得,则.解法二:由赋值法易求得,可知当时,取最小值.故选:A【点睛】此题考查的是由数列的递推式求数列的通项,采用了赋值法,属于中档题.4B【解析】由题意可将方程转化为,令,进而将方程转化为,即或,再利用的单调性与最值即可得到结论.【详解】由题意知方程在上恰有三个不相等的实根,即,.因为,式两边同除以,得.所以方程有三个不等的正实根.记
8、,则上述方程转化为.即,所以或.因为,当时,所以在,上单调递增,且时,.当时,在上单调递减,且时,.所以当时,取最大值,当,有一根.所以恰有两个不相等的实根,所以.故选:B.【点睛】本题考查了函数与方程的关系,考查函数的单调性与最值,转化的数学思想,属于中档题.5B【解析】计算,故,解得答案.【详解】当时,即,且.故,故.故选:.【点睛】本题考查了数列的相关计算,意在考查学生的计算能力和对于数列公式方法的综合应用.6D【解析】根据三角形的面积公式以及余弦定理进行化简求出的值,然后利用两角和差的正弦公式进行求解即可【详解】解:由,得, , ,即即,则, , , ,即,则,故选D【点睛】本题主要考
9、查解三角形的应用,结合三角形的面积公式以及余弦定理求出的值以及利用两角和差的正弦公式进行计算是解决本题的关键7D【解析】求的展开式中的常数项,可转化为求展开式中的常数项和项,再求和即可得出答案.【详解】由题意,中常数项为,中项为,所以的展开式中的常数项为:.故选:D【点睛】本题主要考查二项式定理的应用和二项式展开式的通项公式,考查学生计算能力,属于基础题.8C【解析】由可得,解得或,所以或,又,所以,故选C9A【解析】根据指数型函数所过的定点,确定,再根据条件,利用基本不等式求的最小值.【详解】定点为,,当且仅当时等号成立,即时取得最小值.故选:A【点睛】本题考查指数型函数的性质,以及基本不等
10、式求最值,意在考查转化与变形,基本计算能力,属于基础题型.10D【解析】利用倍角公式求得的值,利用诱导公式求得的值,利用同角三角函数关系式求得的值,进而求得的值,最后利用正切差角公式求得结果.【详解】,故选:D.【点睛】该题考查的是有关三角函数求值问题,涉及到的知识点有诱导公式,正切倍角公式,同角三角函数关系式,正切差角公式,属于基础题目.11A【解析】根据奇偶性定义和性质可判断出函数为偶函数且在上是减函数,由此可将不等式化为;利用分离变量法可得,求得的最大值和的最小值即可得到结果.【详解】 为定义在上的偶函数,图象关于轴对称又在上是增函数 在上是减函数 ,即对于恒成立 在上恒成立,即的取值范
11、围为:本题正确选项:【点睛】本题考查利用函数的奇偶性和单调性求解函数不等式的问题,涉及到恒成立问题的求解;解题关键是能够利用函数单调性将函数值的大小关系转化为自变量的大小关系,从而利用分离变量法来处理恒成立问题.12B【解析】将人脸识别方向的人数分成:有人、有人两种情况进行分类讨论,结合捆绑计算出不同的分配方法数.【详解】当人脸识别方向有2人时,有种,当人脸识别方向有1人时,有种,共有360种.故选:B【点睛】本小题主要考查简单排列组合问题,考查分类讨论的数学思想方法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】依题意可得,再根据求模,求数量积,最后根据夹角公式计算
12、可得;【详解】解:因为是夹角为的两个单位向量所以,又,所以,所以,因为所以;故答案为:【点睛】本题考查平面向量的数量积的运算律,以及夹角的计算,属于基础题.14【解析】求出抛物线的焦点坐标,代入圆的方程,求出的值,再求出准线方程,利用点到直线的距离公式,求出弦心距,利用勾股定理可以求出弦长的一半,进而求出弦长【详解】抛物线E: 的准线为,焦点为(0,1),把焦点的坐标代入圆的方程中,得,所以圆心的坐标为,半径为5,则圆心到准线的距离为1,所以弦长【点睛】本题考查了抛物线的准线、圆的弦长公式15【解析】先由题意得:,再利用向量数量积的几何意义得,可得结果.【详解】由知:,则在方向的投影为,由向量
13、数量积的几何意义得:,故答案为【点睛】本题考查了投影的应用,考查了数量积的几何意义及向量的模的运算,属于基础题.16【解析】利用等比数列的性质求得,进而求得,再利用对数运算求得的值.【详解】由于,所以,则,.故答案为:【点睛】本小题主要考查等比数列的性质,考查对数运算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2)证明见解析;【解析】(1)由题意焦距为2,设点,代入椭圆,解得,从而四边形的面积,由此能求出椭圆的标准方程(2)由题意,联立直线与椭圆的方程,得,推导出,由此猜想:直线过定点,从而能证明,三点共线,直线过定点由题意设,直线,代入椭圆标准方
14、程:,得,推导出,由此推导出(定值)【详解】(1)由题意焦距为2,可设点,代入椭圆,得,解得,四边形的面积,椭圆的标准方程为(2)由题意,联立直线与椭圆的方程,得,解得,从而,同理可得,猜想:直线过定点,下证之:,三点共线,直线过定点为定值,理由如下:由题意设,直线,代入椭圆标准方程:,得,(定值)【点睛】本题考查椭圆标准方程的求法,考查直线过定点的证明,考查两直线的斜率的比值是否为定值的判断与求法,考查椭圆、直线方程、韦达定理等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题18()极小值,极大值;()或【解析】()根据偶函数定义列方程,解得.再求导数,根据导函数零点列表分析导函数
15、符号变化规律,即得极值,()先分离变量,转化研究函数,利用导数研究单调性与图象,最后根据图象确定满足条件的的取值范围【详解】()由函数是偶函数,得,即对于任意实数都成立,所以. 此时,则.由,解得. 当x变化时,与的变化情况如下表所示: 00极小值极大值所以在,上单调递减,在上单调递增. 所以有极小值,有极大值. ()由,得. 所以“在区间上有两个零点”等价于“直线与曲线,有且只有两个公共点”. 对函数求导,得. 由,解得,. 当x变化时,与的变化情况如下表所示: 00极小值极大值所以在,上单调递减,在上单调递增. 又因为,所以当或时,直线与曲线,有且只有两个公共点. 即当或时,函数在区间上有
16、两个零点.【点睛】利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.19(1)(2)见解析【解析】(1)分三种情况去绝对值,求出最大值与已知最大值相等列式可解得;(2)将所证不等式转化为2ab1,再构造函数利用导数判断单调性求出最小值可证【详解】(1),. 当时,取得最大值. . (2)由(),得,. ,当且仅当时等号成立,. 令,.则在上单调递减. 当时,.【点睛】本题考查了绝对值不等式的解法,属中档题本题主要考查了绝对值不等式的求解,以及不
17、等式的恒成立问题,其中解答中根据绝对值的定义,合理去掉绝对值号,及合理转化恒成立问题是解答本题的关键,着重考查分析问题和解答问题的能力,以及转化思想的应用.20(1)(2)见解析【解析】(1)求出函数的导函数,依题意可得在上恒成立,参变分离得在上恒成立.设,求出即可得到参数的取值范围;(2)不妨设,利用导数说明函数在上是减函数,即可得证;【详解】解:(1),且函数在上为减函数,即在上恒成立,在上恒成立.设,函数在上单调递增,实数的取值范围为.(2)不妨设,则,.,又,令,在上为减函数,即,在上是减函数,即,当时,.,.【点睛】本题考查了利用导数研究函数的单调性、极值与最值,利用导数证明不等式,考查了推理能力与计算能力,属于难题21;.【解析】利用正弦定理化简求值即可;利用两角和差的正弦函数的化简公式,结合正弦定理求出的值.【详解】解:,由正弦定理得:,又,为三角形内角,故,则,故,;(2)平分,设,则,,则,又,则在中,由正弦定理:,.【点睛】本题考查正弦定理和两角和差的正弦函数的化简公式,二倍角公式,考查运算能力,属于基础题.22(1)(2)0【解析】(1)根据题意,设直线,与联立,得,再由弦
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 赣州市人民医院运动疗法技能考核
- 漳州市中医院实习医师指导能力考核
- 莆田市人民医院手法治疗操作技能考核
- 泰州市中医院超声诊断医师上岗资格认证
- 宿迁市中医院成人正畸技术考核
- 温州市中医院特殊血液成分输注管理考核
- 衢州市人民医院肛肠术后疼痛管理考核
- 淮安市中医院感染性疾病科医师上岗资格认证标准题库
- 盐城市人民医院头颈部影像诊断考核
- 绍兴市中医院癫痫术前评估考核
- 湖北省低空经济产业联盟
- 肺癌的药物治疗
- 医院消防安全课件下载
- DB12∕T 598.4-2024 建设项目用地控制指标第4部分:交通运输项目
- 工作迎新流程策划
- 正念冥想培训课件
- 医保局大比武活动方案
- 学前儿童维生素卫生学纲要
- 麻醉手术围术期全流程管理
- 供热维保管理制度
- 水肥一体化实施方案-智能水肥一体化系统课件
评论
0/150
提交评论