版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1元代数学家朱世杰的数学名著算术启蒙是中国古代代数学的通论,其中关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序图,若,则输出的
2、( )A3B4C5D62已知是虚数单位,则复数( )ABC2D3设是虚数单位,则( )ABC1D24若函数的图象经过点,则函数图象的一条对称轴的方程可以为( )ABCD5小张家订了一份报纸,送报人可能在早上之间把报送到小张家,小张离开家去工作的时间在早上之间.用表示事件:“小张在离开家前能得到报纸”,设送报人到达的时间为,小张离开家的时间为,看成平面中的点,则用几何概型的公式得到事件的概率等于( )ABCD6已知抛物线的焦点为,是抛物线上两个不同的点,若,则线段的中点到轴的距离为( )A5B3CD27若,则, , , 的大小关系为( )ABCD8当时,函数的图象大致是( )ABCD9若、满足约
3、束条件,则的最大值为( )ABCD10已知复数满足,则的共轭复数是( )ABCD11如图,在三棱锥中,平面,分别是棱,的中点,则异面直线与所成角的余弦值为A0BCD112若圆锥轴截面面积为,母线与底面所成角为60,则体积为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13设函数,则_.14已知向量,且向量与的夹角为_.15已知多项式满足,则_,_16已知,其中,为正的常数,且,则的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)若函数在处有极值,且,则称为函数的“F点”.(1)设函数().当时,求函数的极值;若函数存在“F点”,求k的值;(2
4、)已知函数(a,b,)存在两个不相等的“F点”,且,求a的取值范围.18(12分)数列满足,且.(1)证明:数列是等差数列,并求数列的通项公式;(2)求数列的前项和.19(12分)若关于的方程的两根都大于2,求实数的取值范围20(12分)在四棱锥中,底面是平行四边形,底面(1)证明:;(2)求二面角的正弦值21(12分)已知中,是上一点(1)若,求的长;(2)若,求的值22(10分)如图,在四面体中,.(1)求证:平面平面;(2)若,求四面体的体积.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】分析:根据流程图中的可知
5、,每次循环的值应是一个等比数列,公比为;根据流程图中的可知,每次循环的值应是一个等比数列,公比为,根据每次循环得到的的值的大小决定循环的次数即可.详解: 记执行第次循环时,的值记为有,则有;记执行第次循环时,的值记为有,则有.令,则有,故,故选B.点睛:本题为算法中的循环结构和数列通项的综合,属于中档题,解题时注意流程图中蕴含的数列关系(比如相邻项满足等比数列、等差数列的定义,是否是求数列的前和、前项积等).2A【解析】根据复数的基本运算求解即可.【详解】.故选:A【点睛】本题主要考查了复数的基本运算,属于基础题.3C【解析】由,可得,通过等号左右实部和虚部分别相等即可求出的值.【详解】解:,
6、 ,解得:.故选:C.【点睛】本题考查了复数的运算,考查了复数相等的涵义.对于复数的运算类问题,易错点是把 当成进行运算.4B【解析】由点求得的值,化简解析式,根据三角函数对称轴的求法,求得的对称轴,由此确定正确选项.【详解】由题可知.所以令,得令,得故选:B【点睛】本小题主要考查根据三角函数图象上点的坐标求参数,考查三角恒等变换,考查三角函数对称轴的求法,属于中档题.5D【解析】这是几何概型,画出图形,利用面积比即可求解.【详解】解:事件发生,需满足,即事件应位于五边形内,作图如下:故选:D【点睛】考查几何概型,是基础题.6D【解析】由抛物线方程可得焦点坐标及准线方程,由抛物线的定义可知,继
7、而可求出,从而可求出的中点的横坐标,即为中点到轴的距离.【详解】解:由抛物线方程可知,即,.设 则,即,所以.所以线段的中点到轴的距离为.故选:D.【点睛】本题考查了抛物线的定义,考查了抛物线的方程.本题的关键是由抛物线的定义求得两点横坐标的和.7D【解析】因为,所以,因为,所以,.综上;故选D.8B【解析】由,解得,即或,函数有两个零点,不正确,设,则,由,解得或,由,解得:,即是函数的一个极大值点,不成立,排除,故选B.【方法点晴】本题通过对多个图象的选择考察函数的解析式、定义域、值域、单调性,导数的应用以及数学化归思想,属于难题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较
8、强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意选项一一排除.9C【解析】作出不等式组所表示的可行域,平移直线,找出直线在轴上的截距最大时对应的最优解,代入目标函数计算即可.【详解】作出满足约束条件的可行域如图阴影部分(包括边界)所示由,得,平移直线,当直线经过点时,该直线在轴上的截距最大,此时取最大值,即.故选:C.【点睛】本题考查简单的线性规划问题,考查线性目标函数的最值,一般利用平移直线的方法找到最优解,考查数形结合思想的应用,属于基础题.10B【解析】根据复数的除法运
9、算法则和共轭复数的定义直接求解即可.【详解】由,得,所以故选:B【点睛】本题考查了复数的除法的运算法则,考查了复数的共轭复数的定义,属于基础题.11B【解析】根据题意可得平面,则即异面直线与所成的角,连接CG,在中,易得,所以,所以,故选B12D【解析】设圆锥底面圆的半径为,由轴截面面积为可得半径,再利用圆锥体积公式计算即可.【详解】设圆锥底面圆的半径为,由已知,解得,所以圆锥的体积.故选:D【点睛】本题考查圆锥的体积的计算,涉及到圆锥的定义,是一道容易题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】由自变量所在定义域范围,代入对应解析式,再由对数加减法运算法则与对数恒等式关系
10、分别求值再相加,即为答案.【详解】因为函数,则因为,则故故答案为:【点睛】本题考查分段函数求值,属于简单题.141【解析】根据向量数量积的定义求解即可【详解】解:向量,且向量与的夹角为,|;所以:()2cos221,故答案为:1【点睛】本题主要考查平面向量的数量积的定义,属于基础题15 【解析】多项式 满足令,得,则该多项式的一次项系数为令,得故答案为5,7216【解析】把已知等式变形,展开两角和与差的三角函数,结合已知求得值【详解】解:由,得,即,又,解得:为正的常数,故答案为:【点睛】本题考查两角和与差的三角函数,考查数学转化思想方法,属于中档题三、解答题:共70分。解答应写出文字说明、证
11、明过程或演算步骤。17(1)极小值为1,无极大值.实数k的值为1.(2)【解析】(1)将代入可得,求导讨论函数单调性,即得极值;设是函数的一个“F点”(),即是的零点,那么由导数可知,且,可得,根据可得,设,由的单调性可得,即得.(2)方法一:先求的导数,存在两个不相等的“F点”,可以由和韦达定理表示出,的关系,再由,可得的关系式,根据已知解即得.方法二:由函数存在不相等的两个“F点”和,可知,是关于x的方程组的两个相异实数根,由得,分两种情况:是函数一个“F点”,不是函数一个“F点”,进行讨论即得.【详解】解:(1)当时, (),则有(),令得,列表如下:x10极小值故函数在处取得极小值,极
12、小值为1,无极大值.设是函数的一个“F点”().(),是函数的零点.,由,得,由,得,即.设,则,所以函数在上单调增,注意到,所以方程存在唯一实根1,所以,得,根据知,时,是函数的极小值点,所以1是函数的“F点”.综上,得实数k的值为1.(2)由(a,b,),可得().又函数存在不相等的两个“F点”和,是关于x的方程()的两个相异实数根.又,即,从而,即.,解得.所以,实数a的取值范围为.(2)(解法2)因为( a,b,)所以().又因为函数存在不相等的两个“F点”和,所以,是关于x的方程组的两个相异实数根.由得,.(2.1)当是函数一个“F点”时,且.所以,即.又,所以,所以.又,所以.(2
13、.2)当不是函数一个“F点”时,则,是关于x的方程的两个相异实数根.又,所以得所以,得.所以,得.综合(2.1)(2.2),实数a的取值范围为.【点睛】本题考查利用导数求函数极值,以及由函数的极值求参数值等,是一道关于函数导数的综合性题目,考查学生的分析和数学运算能力,有一定难度.18(1)证明见解析,;(2)【解析】(1)利用,推出,然后利用等差数列的通项公式,即可求解;(2)由(1)知,利用裂项法,即可求解数列的前n项和.【详解】(1)由题意,数列满足且可得,即,所以数列是公差,首项的等差数列,故,所以.(2)由(1)知,所以数列的前n项和:=【点睛】本题主要考查了等差数列的通项公式,以及
14、“裂项法”求解数列的前n项和,其中解答中熟记等差数列的定义和通项公式,合理利用“裂项法”求和是解答的关键,着重考查了推理与运算能力.19【解析】先令,根据题中条件得到,求解,即可得出结果.【详解】因为关于的方程的两根都大于2,令所以有,解得,所以.【点睛】本题主要考查一元二次方程根的分布问题,熟记二次函数的特征即可,属于常考题型.20(1)见解析(2)【解析】(1)利用正弦定理求得,由此得到,结合证得平面,由此证得.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出二面角的余弦值,再转化为正弦值.【详解】(1)在中,由正弦定理可得:, ,底面,平面, ; (2)以为坐标原点建立如图所示的
15、空间直角坐标系, 设平面的法向量为,由可得:,令,则, 设平面的法向量为,由可得:,令,则, 设二面角的平面角为,由图可知为钝角,则, ,故二面角的正弦值为.【点睛】本小题主要考查线线垂直的证明,考查空间向量法求二面角,考查空间想象能力和逻辑推理能力,属于中档题.21(1) (2)【解析】(1)运用三角形面积公式求出的长度,然后再运用余弦定理求出的长.(2)运用正弦定理分别表示出和,结合已知条件计算出结果.【详解】(1)由在中,由余弦定理可得(2)由已知得在中,由正弦定理可知在中,由正弦定理可知故【点睛】本题考查了正弦定理、三角形面积公式以及余弦定理,结合三角形熟练运用各公式是解题关键,此类题目是常考题型,能够运用公式进行边角互化,需要掌握解题方法.2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 重医大实验核医学教学大纲
- 速冻果蔬制作工岗后模拟考核试卷含答案
- 2026年工业互联网 绿色制造项目公司成立分析报告
- 2026年工业互联网设备更新服务项目可行性研究报告
- 2026年光伏电站保险项目可行性研究报告
- 2026年家电以旧换新项目可行性研究报告
- 2026年人形机器人商业化落地项目可行性研究报告
- 2026年储能安全主动防御项目可行性研究报告
- 2026年含氟高分子材料(PTFEPVDF)项目可行性研究报告
- 2026年云存储数据备份合同
- 2026 昆明市高三市统测 三诊一模 英语试卷
- 市政设施巡查及维护方案
- 大型活动安保工作预案模板
- 2025年文化遗产数字化保护与开发:技术创新与经济效益研究报告
- 1.2 宪法的内容和作用 课件 (共28张) 八年级道法下册
- 山西焦煤考试题目及答案
- 加盟酒店合同范本
- (2025版)成人肺功能检查技术进展及临床应用指南解读课件
- 《春秋》讲解课件
- 铁路信号基础设备维护实训指导课件 5.认识25Hz相敏轨道电路
- T-ZGKSL 022-2025 头皮毛发健康理疗师职业能力评价规范
评论
0/150
提交评论