2022届上海外国语大学附中高考数学全真模拟密押卷含解析_第1页
2022届上海外国语大学附中高考数学全真模拟密押卷含解析_第2页
2022届上海外国语大学附中高考数学全真模拟密押卷含解析_第3页
2022届上海外国语大学附中高考数学全真模拟密押卷含解析_第4页
2022届上海外国语大学附中高考数学全真模拟密押卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目

2、要求的。1已知函数,集合,则( )ABCD2是平面上的一定点,是平面上不共线的三点,动点满足 ,则动点的轨迹一定经过的( )A重心B垂心C外心D内心3如图,正方体的棱长为1,动点在线段上,、分别是、的中点,则下列结论中错误的是( )A,B存在点,使得平面平面C平面D三棱锥的体积为定值4某部队在一次军演中要先后执行六项不同的任务,要求是:任务A必须排在前三项执行,且执行任务A之后需立即执行任务E,任务B、任务C不能相邻,则不同的执行方案共有( )A36种B44种C48种D54种5已知平面向量满足与的夹角为,且,则实数的值为( )ABCD6已知实数x,y满足约束条件,若的最大值为2,则实数k的值为

3、( )A1BC2D7下列判断错误的是( )A若随机变量服从正态分布,则B已知直线平面,直线平面,则“”是“”的充分不必要条件C若随机变量服从二项分布: , 则D是的充分不必要条件8已知数列an满足:an=2,n5a1a2an-1-1,n6nN*.若正整数k(k5)使得a12+a22+ak2=a1a2ak成立,则k=( )A16B17C18D199复数的虚部是 ( )ABCD10已知斜率为的直线与双曲线交于两点,若为线段中点且(为坐标原点),则双曲线的离心率为( )AB3CD11已知函数是奇函数,且,若对,恒成立,则的取值范围是( )ABCD12记递增数列的前项和为.若,且对中的任意两项与(),

4、其和,或其积,或其商仍是该数列中的项,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知实数,满足,则的最大值为_.14若x5=a0+a1(x-2)+a2(x-2)2+a5(x-2)5,则a1=_,a1+a2+a5=_15如图,在ABC中,AB4,D是AB的中点,E在边AC上,AE2EC,CD与BE交于点O,若OBOC,则ABC面积的最大值为_16在中,角,的对边长分别为,满足,则的面积为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,其中,.(1)函数的图象能否与x轴相切?若能,求出实数a;若不能,请说明理由.(2)若在处取得极大

5、值,求实数a的取值范围.18(12分)如图所示的几何体中,四边形为正方形,四边形为梯形,为中点.(1)证明:;(2)求二面角的余弦值.19(12分)如图,在棱长为的正方形中,分别为,边上的中点,现以为折痕将点旋转至点的位置,使得为直二面角(1)证明:;(2)求与面所成角的正弦值20(12分)如图,四棱锥中,平面平面,底面为梯形.,且与均为正三角形.为的中点为重心,与相交于点.(1)求证:平面;(2)求三棱锥的体积.21(12分)已知函数.(1)解关于的不等式;(2)若函数的图象恒在直线的上方,求实数的取值范围22(10分)直线与抛物线相交于,两点,且,若,到轴距离的乘积为(1)求的方程;(2)

6、设点为抛物线的焦点,当面积最小时,求直线的方程参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】分别求解不等式得到集合,再利用集合的交集定义求解即可.【详解】,,故选C【点睛】本题主要考查了集合的基本运算,难度容易.2B【解析】解出,计算并化简可得出结论【详解】(),即点P在BC边的高上,即点P的轨迹经过ABC的垂心故选B【点睛】本题考查了平面向量的数量积运算在几何中的应用,根据条件中的角计算是关键3B【解析】根据平行的传递性判断A;根据面面平行的定义判断B;根据线面垂直的判定定理判断C;由三棱锥以三角形为底,则高和底面积

7、都为定值,判断D.【详解】在A中,因为分别是中点,所以,故A正确;在B中,由于直线与平面有交点,所以不存在点,使得平面平面,故B错误;在C中,由平面几何得,根据线面垂直的性质得出,结合线面垂直的判定定理得出平面,故C正确;在D中,三棱锥以三角形为底,则高和底面积都为定值,即三棱锥的体积为定值,故D正确;故选:B【点睛】本题主要考查了判断面面平行,线面垂直等,属于中档题.4B【解析】分三种情况,任务A排在第一位时,E排在第二位;任务A排在第二位时,E排在第三位;任务A排在第三位时,E排在第四位,结合任务B和C不能相邻,分别求出三种情况的排列方法,即可得到答案【详解】六项不同的任务分别为A、B、C

8、、D、E、F,如果任务A排在第一位时,E排在第二位,剩下四个位置,先排好D、F,再在D、F之间的3个空位中插入B、C,此时共有排列方法:;如果任务A排在第二位时,E排在第三位,则B,C可能分别在A、E的两侧,排列方法有,可能都在A、E的右侧,排列方法有; 如果任务A排在第三位时,E排在第四位,则B,C分别在A、E的两侧;所以不同的执行方案共有种【点睛】本题考查了排列组合问题,考查了学生的逻辑推理能力,属于中档题5D【解析】由已知可得,结合向量数量积的运算律,建立方程,求解即可.【详解】依题意得由,得即,解得.故选:.【点睛】本题考查向量的数量积运算,向量垂直的应用,考查计算求解能力,属于基础题

9、.6B【解析】画出约束条件的可行域,利用目标函数的几何意义,求出最优解,转化求解即可.【详解】可行域如图中阴影部分所示,要使得z能取到最大值,则,当时,x在点B处取得最大值,即,得;当时,z在点C处取得最大值,即,得(舍去).故选:B.【点睛】本题考查由目标函数最值求解参数值,数形结合思想,分类讨论是解题的关键,属于中档题.7D【解析】根据正态分布、空间中点线面的位置关系、充分条件与必要条件的判断、二项分布及不等式的性质等知识,依次对四个选项加以分析判断,进而可求解.【详解】对于选项,若随机变量服从正态分布,根据正态分布曲线的对称性,有,故选项正确,不符合题意;对于选项,已知直线平面,直线平面

10、,则当时一定有,充分性成立,而当时,不一定有,故必要性不成立,所以“”是“”的充分不必要条件,故选项正确,不符合题意;对于选项,若随机变量服从二项分布: , 则,故选项正确,不符合题意;对于选项,仅当时有,当时,不成立,故充分性不成立;若,仅当时有,当时,不成立,故必要性不成立.因而是的既不充分也不必要条件,故选项不正确,符合题意.故选:D【点睛】本题考查正态分布、空间中点线面的位置关系、充分条件与必要条件的判断、二项分布及不等式的性质等知识,考查理解辨析能力与运算求解能力,属于基础题.8B【解析】由题意可得a1=a2=a3=a4=a5=2,a6=a1a2a3a5-1=25-1=31,n6时,

11、a1a2an-1=1+an,将n换为n+1,两式相除,an2=an+1-an+1,n6,累加法求得a62+a72+ak2=ak+1-a6+k-5即有a12+a22+ak2=20+ak+1-a6+k-5=ak+1+k-16,结合条件,即可得到所求值【详解】解:an=2,n5a1a2an-1-1,n6(nN*),即a1=a2=a3=a4=a5=2,a6=a1a2a3a5-1=25-1=31,n6时,a1a2an-1=1+an,a1a2an=1+an+1,两式相除可得1+an+11+an=an,则an2=an+1-an+1,n6,由a62=a7-a6+1,a72=a8-a7+1,ak2=ak+1-a

12、k+1,k5,可得a62+a72+ak2=ak+1-a6+k-5a12+a22+ak2=20+ak+1-a6+k-5=ak+1+k-16,且a1a2ak=1+ak+1,正整数k(k5)时,要使得a12+a22+ak2=a1a2ak成立,则ak+1+k-16=ak+1+1,则k=17,故选:B【点睛】本题考查与递推数列相关的方程的整数解的求法,注意将题设中的递推关系变形得到新的递推关系,从而可简化与数列相关的方程,本题属于难题.9C【解析】因为 ,所以的虚部是 ,故选C.10B【解析】设,代入双曲线方程相减可得到直线的斜率与中点坐标之间的关系,从而得到的等式,求出离心率【详解】,设,则,两式相减

13、得,故选:B【点睛】本题考查求双曲线的离心率,解题方法是点差法,即出现双曲线的弦中点坐标时,可设弦两端点坐标代入双曲线方程相减后得出弦所在直线斜率与中点坐标之间的关系11A【解析】先根据函数奇偶性求得,利用导数判断函数单调性,利用函数单调性求解不等式即可.【详解】因为函数是奇函数,所以函数是偶函数.,即,又,所以,.函数的定义域为,所以,则函数在上为单调递增函数.又在上,所以为偶函数,且在上单调递增.由,可得,对恒成立,则,对恒成立,得,所以的取值范围是.故选:A.【点睛】本题考查利用函数单调性求解不等式,根据方程组法求函数解析式,利用导数判断函数单调性,属压轴题.12D【解析】由题意可得,从

14、而得到,再由就可以得出其它各项的值,进而判断出的范围【详解】解:,或其积,或其商仍是该数列中的项,或者或者是该数列中的项,又数列是递增数列,只有是该数列中的项,同理可以得到,也是该数列中的项,且有,或(舍,根据,同理易得,故选:D【点睛】本题考查数列的新定义的理解和运用,以及运算能力和推理能力,属于中档题二、填空题:本题共4小题,每小题5分,共20分。13【解析】画出不等式组表示的平面区域,将目标函数理解为点与构成直线的斜率,数形结合即可求得.【详解】不等式组表示的平面区域如下所示:因为可以理解为点与构成直线的斜率,数形结合可知,当且仅当目标函数过点时,斜率取得最大值,故的最大值为.故答案为:

15、.【点睛】本题考查目标函数为斜率型的规划问题,属基础题.1480 211 【解析】由,利用二项式定理即可得,分别令、后,作差即可得.【详解】由题意,则,令,得,令,得,故.故答案为:80,211.【点睛】本题考查了二项式定理的应用,属于中档题.15【解析】先根据点共线得到,从而得到O的轨迹为阿氏圆,结合三角形和三角形的面积关系可求.【详解】设B,O,E共线,则,解得,从而O为CD中点,故.在BOD中,BD2,易知O的轨迹为阿氏圆,其半径,故故答案为:.【点睛】本题主要考查三角形的面积问题,把所求面积进行转化是求解的关键,侧重考查数学运算的核心素养.16【解析】由二次方程有解的条件,结合辅助角公

16、式和正弦函数的值域可求,进而可求,然后结合余弦定理可求,代入,计算可得所求【详解】解:把看成关于的二次方程,则,即,即为,化为,而,则,由于,可得,可得,即,代入方程可得,由余弦定理可得,解得:(负的舍去),故答案为【点睛】本题主要考查一元二次方程的根的存在条件及辅助角公式及余弦定理和三角形的面积公式的应用,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17 (1) 答案见解析(2) 【解析】(1)假设函数的图象与x轴相切于,根据相切可得方程组,看方程是否有解即可;(2)求出的导数,设(),根据函数的单调性及在处取得极大值求出a的范围即可.【详解】(1)函数的图象不能

17、与x轴相切,理由若下:.假设函数的图象与x轴相切于则即显然,代入中得,无实数解.故函数的图象不能与x轴相切.(2)(),设(), 恒大于零.在上单调递增.又,存在唯一,使,且时,时,当时,恒成立,在单调递增,无极值,不合题意.当时,可得当时,当时,.所以在内单调递减,在内单调递增,所以在处取得极小值,不合题意.当时,可得当时,当时,.所以在内单调递增,在内单调递减,所以在处取得极大值,符合题意.此时由得即,综上可知,实数a的取值范围为.【点睛】本题考查了函数的单调性,最值问题,考查导数的应用以及分类讨论思想,转化思想,属于难题18(1)见解析;(2)【解析】(1)取的中点,结合三角形中位线和长

18、度关系,为平行四边形,进而得到,根据线面平行判定定理可证得结论;(2)以,为,轴建立空间直角坐标系,分别求得两面的法向量,求得法向量夹角的余弦值;根据二面角为锐角确定最终二面角的余弦值;【详解】(1)取的中点,连结,因为为中点,所以,为平行四边形,所以,又因为,所以;(2)由题及(1)易知,两两垂直,所以以,为,轴建立空间直角坐标系,则,易知面的法向量为设面的法向量为则可得所以,如图可知二面角为锐角,所以余弦值为【点睛】本题考查立体几何中直线与平面平行关系的证明、空间向量法求解二面角,正确求解法向量是解题的关键,属于中档题.19(1)证明见详解;(2)【解析】(1)在折叠前的正方形ABCD中,

19、作出对角线AC,BD,由正方形性质知,又/,则于点H,则由直二面角可知面 ,故.又,则面,故命题得证;(2)作出线面角,在直角三角形中求解该角的正弦值.【详解】解:(1)证明:在正方形中,连结交于因为/,故可得,即又旋转不改变上述垂直关系,且平面,面,又面,所以(2)因为为直二面角,故平面平面,又其交线为,且平面,故可得底面,连结,则即为与面所成角,连结交于,在中,在中,所以与面所成角的正弦值为【点睛】本题考查了线面垂直的证明与性质,利用定义求线面角,属于中档题.20(1)见解析(2)【解析】(1)第(1)问,连交于,连接.证明/ ,即证平面. (2)第(2)问,主要是利用体积变换,,求得三棱锥的体积.【详解】(1)方法一:连交于,连接.由梯形,且,知 又为的中点,为的重心,在中, ,故/ .又平面, 平面, 平面.方法二:过作交PD于N,过F作FM|AD交CD于M,连接MN, G为PAD的重心,又ABCD为梯形,AB|

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论