




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知(为虚数单位,为的共轭复数),则复数在复平面内对应的点在( ).A第一象限B第二象限C第三象限D第四象限2过抛
2、物线的焦点作直线与抛物线在第一象限交于点A,与准线在第三象限交于点B,过点作准线的垂线,垂足为.若,则( )ABCD3已知等差数列的前项和为,若,则数列的公差为( )ABCD4若向量,则与共线的向量可以是()ABCD5已知函数,当时,的取值范围为,则实数m的取值范围是( )ABCD6集合,则集合的真子集的个数是A1个B3个C4个D7个7在正方体中,E是棱的中点,F是侧面内的动点,且与平面的垂线垂直,如图所示,下列说法不正确的是( )A点F的轨迹是一条线段B与BE是异面直线C与不可能平行D三棱锥的体积为定值8已知集合,则( )ABCD9已知向量满足,且与的夹角为,则( )ABCD10已知函数的图
3、象向左平移个单位后得到函数的图象,则的最小值为( )ABCD11如图,在矩形中的曲线分别是,的一部分,在矩形内随机取一点,若此点取自阴影部分的概率为,取自非阴影部分的概率为,则()ABCD大小关系不能确定12在中,点D是线段BC上任意一点,则( )AB-2CD2二、填空题:本题共4小题,每小题5分,共20分。13已知,其中,为正的常数,且,则的值为_.14等差数列(公差不为0),其中,成等比数列,则这个等比数列的公比为_.15已知复数(为虚数单位)为纯虚数,则实数的值为_16春节期间新型冠状病毒肺炎疫情在湖北爆发,为了打赢疫情防控阻击战,我省某医院选派2名医生,6名护士到湖北、两地参加疫情防控
4、工作,每地一名医生,3名护士,其中甲乙两名护士不到同一地,共有_种选派方法.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)表示,中的最大值,如,己知函数,.(1)设,求函数在上的零点个数;(2)试探讨是否存在实数,使得对恒成立?若存在,求的取值范围;若不存在,说明理由.18(12分)如图,四边形中,沿对角线将翻折成,使得. (1)证明:;(2)求直线与平面所成角的正弦值.19(12分)在平面直角坐标系中,直线的参数方程为(为参数),直线与曲线交于两点.(1)求的长;(2)在以为极点,轴的正半轴为极轴建立的极坐标系中,设点的极坐标为,求点到线段中点的距离.20(12
5、分)底面为菱形的直四棱柱,被一平面截取后得到如图所示的几何体.若,.(1)求证:;(2)求二面角的正弦值.21(12分)在直角坐标系xOy中,直线的参数方程为(t为参数).以原点O为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为.(1)写出圆C的直角坐标方程;(2)设直线l与圆C交于A,B两点,求的值.22(10分)已知椭圆 的左焦点为F,上顶点为A,直线AF与直线 垂直,垂足为B,且点A是线段BF的中点.(I)求椭圆C的方程;(II)若M,N分别为椭圆C的左,右顶点,P是椭圆C上位于第一象限的一点,直线MP与直线 交于点Q,且,求点P的坐标.参考答案一、选择题:本题共12小题,每小题
6、5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】设,由,得,利用复数相等建立方程组即可.【详解】设,则,所以,解得,故,复数在复平面内对应的点为,在第四象限.故选:D.【点睛】本题考查复数的几何意义,涉及到共轭复数的定义、复数的模等知识,考查学生的基本计算能力,是一道容易题.2C【解析】需结合抛物线第一定义和图形,得为等腰三角形,设准线与轴的交点为,过点作,再由三角函数定义和几何关系分别表示转化出,结合比值与正切二倍角公式化简即可【详解】如图,设准线与轴的交点为,过点作.由抛物线定义知,所以,所以.故选:C【点睛】本题考查抛物线的几何性质,三角函数的性质,数形结
7、合思想,转化与化归思想,属于中档题3D【解析】根据等差数列公式直接计算得到答案.【详解】依题意,故,故,故,故选:D【点睛】本题考查了等差数列的计算,意在考查学生的计算能力.4B【解析】先利用向量坐标运算求出向量,然后利用向量平行的条件判断即可.【详解】故选B【点睛】本题考查向量的坐标运算和向量平行的判定,属于基础题,在解题中要注意横坐标与横坐标对应,纵坐标与纵坐标对应,切不可错位.5C【解析】求导分析函数在时的单调性、极值,可得时,满足题意,再在时,求解的x的范围,综合可得结果.【详解】当时,令,则;,则,函数在单调递增,在单调递减.函数在处取得极大值为,时,的取值范围为,又当时,令,则,即
8、,综上所述,的取值范围为.故选C.【点睛】本题考查了利用导数分析函数值域的方法,考查了分段函数的性质,属于难题.6B【解析】由题意,结合集合,求得集合,得到集合中元素的个数,即可求解,得到答案【详解】由题意,集合, 则,所以集合的真子集的个数为个,故选B【点睛】本题主要考查了集合的运算和集合中真子集的个数个数的求解,其中作出集合的运算,得到集合,再由真子集个数的公式作出计算是解答的关键,着重考查了推理与运算能力7C【解析】分别根据线面平行的性质定理以及异面直线的定义,体积公式分别进行判断【详解】对于,设平面与直线交于点,连接、,则为的中点分别取、的中点、,连接、, ,平面,平面,平面同理可得平
9、面,、是平面内的相交直线平面平面,由此结合平面,可得直线平面,即点是线段上上的动点正确对于,平面平面,和平面相交,与是异面直线,正确对于,由知,平面平面,与不可能平行,错误对于,因为,则到平面的距离是定值,三棱锥的体积为定值,所以正确;故选:【点睛】本题考查了正方形的性质、空间位置关系、空间角、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题8C【解析】求出集合,计算出和,即可得出结论.【详解】,.故选:C.【点睛】本题考查交集和并集的计算,考查计算能力,属于基础题.9A【解析】根据向量的运算法则展开后利用数量积的性质即可.【详解】.故选:A.【点睛】本题主要考查数量积的运算,属于基础
10、题.10A【解析】首先求得平移后的函数,再根据求的最小值.【详解】根据题意,的图象向左平移个单位后,所得图象对应的函数,所以,所以又,所以的最小值为故选:A【点睛】本题考查三角函数的图象变换,诱导公式,意在考查平移变换,属于基础题型.11B【解析】先用定积分求得阴影部分一半的面积,再根据几何概型概率公式可求得【详解】根据题意,阴影部分的面积的一半为:,于是此点取自阴影部分的概率为又,故故选B【点睛】本题考查了几何概型,定积分的计算以及几何意义,属于中档题12A【解析】设,用表示出,求出的值即可得出答案.【详解】设由,.故选:A【点睛】本题考查了向量加法、减法以及数乘运算,需掌握向量加法的三角形
11、法则以及向量减法的几何意义,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】把已知等式变形,展开两角和与差的三角函数,结合已知求得值【详解】解:由,得,即,又,解得:为正的常数,故答案为:【点睛】本题考查两角和与差的三角函数,考查数学转化思想方法,属于中档题144【解析】根据等差数列关系,用首项和公差表示出,解出首项和公差的关系,即可得解.【详解】设等差数列的公差为,由题意得: ,则整理得,所以故答案为:4【点睛】此题考查等差数列基本量的计算,涉及等比中项,考查基本计算能力.15【解析】利用复数的乘法求解再根据纯虚数的定义求解即可.【详解】解:复数为纯虚数,解得故答案为
12、:【点睛】本题主要考查了根据复数为纯虚数求解参数的问题,属于基础题.1624【解析】先求出每地一名医生,3名护士的选派方法的种数,再减去甲乙两名护士到同一地的种数即可.【详解】解:每地一名医生,3名护士的选派方法的种数有,若甲乙两名护士到同一地的种数有,则甲乙两名护士不到同一地的种数有.故答案为:.【点睛】本题考查利用间接法求排列组合问题,正难则反,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)个;(1)存在,.【解析】试题分析:(1)设,对其求导,及最小值,从而得到的解析式,进一步求值域即可;(1)分别对和两种情况进行讨论,得到的解析式,进一步构造,通过求
13、导得到最值,得到满足条件的的范围试题解析:(1)设,1分令,得递增;令,得递减,1分,即,3分设,结合与在上图象可知,这两个函数的图象在上有两个交点,即在上零点的个数为15分(或由方程在上有两根可得)(1)假设存在实数,使得对恒成立,则,对恒成立,即,对恒成立 ,6分设,令,得递增;令,得递减,当即时,4故当时,对恒成立,8分当即时,在上递减,故当时,对恒成立10分若对恒成立,则,11分由及得,故存在实数,使得对恒成立,且的取值范围为11分考点:导数应用.【思路点睛】本题考查了函数恒成立问题;利用导数来判断函数的单调性,进一步求最值;属于难题本题考查函数导数与单调性.确定零点的个数问题:可利用
14、数形结合的办法判断交点个数,如果函数较为复杂,可结合导数知识确定极值点和单调区间从而确定其大致图象.方程的有解问题就是判断是否存在零点的问题,可参变分离,转化为求函数的值域问题处理. 恒成立问题以及可转化为恒成立问题的问题,往往可利用参变分离的方法,转化为求函数最值处理也可构造新函数然后利用导数来求解.注意利用数形结合的数学思想方法.18(1)见证明;(2)【解析】(1)取的中点,连.可证得,于是可得平面,进而可得结论成立(2)运用几何法或向量法求解可得所求角的正弦值【详解】(1)证明:取的中点,连.,又,.在中,又,平面,又平面,.(2)解法1:取的中点,连结,,又,又由题意得为等边三角形,
15、平面作,则有平面,就是直线与平面所成的角设,则,在等边中,又在中,故在中,由余弦定理得,直线与平面所成角的正弦值为解法2:由题意可得,建立如图所示的空间直角坐标系.不妨设,则在直角三角形中,可得,作于,则有平面几何知识可得,又可得,.,设平面的一个法向量为,由,得,令,则得又,设直线与平面所成的角为,则所以直线与平面所成角的正弦值为【点睛】利用向量法求解直线和平面所成角时,关键点是恰当建立空间直角坐标系,确定斜线的方向向量和平面的法向量解题时通过平面的法向量和直线的方向向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线与平面所成的角求解时注意向量的夹角与线面角
16、间的关系19(1) ;(2).【解析】(1)将直线的参数方程化为直角坐标方程,由点到直线距离公式可求得圆心到直线距离,结合垂径定理即可求得的长;(2)将的极坐标化为直角坐标,将直线方程与圆的方程联立,求得直线与圆的两个交点坐标,由中点坐标公式求得的坐标,再根据两点间距离公式即可求得.【详解】(1)直线的参数方程为(为参数),化为直角坐标方程为,即直线与曲线交于两点.则圆心坐标为,半径为1,则由点到直线距离公式可知,所以.(2)点的极坐标为,化为直角坐标可得,直线的方程与曲线的方程联立,化简可得,解得,所以两点坐标为,所以,由两点间距离公式可得.【点睛】本题考查了参数方程与普通方程转化,极坐标与
17、直角坐标的转化,点到直线距离公式应用,两点间距离公式的应用,直线与圆交点坐标求法,属于基础题.20(1)见解析;(2)【解析】(1)先由线面垂直的判定定理证明平面,再证明线线垂直即可;(2)建立空间直角坐标系,求平面的一个法向量与平面的一个法向量,再利用向量数量积运算即可.【详解】(1)证明:连接,由平行且相等,可知四边形为平行四边形,所以.由题意易知,所以,因为,所以平面,又平面,所以.(2)设,由已知可得:平面平面,所以,同理可得:,所以四边形为平行四边形,所以为的中点,为的中点,所以平行且相等,从而平面,又,所以,两两垂直,如图,建立空间直角坐标系,由平面几何知识,得.则,所以,.设平面
18、的法向量为,由,可得,令,则,所以.同理,平面的一个法向量为.设平面与平面所成角为,则,所以.【点睛】本题考查了线面垂直的判定定理及二面角的平面角的求法,重点考查了空间向量的应用,属中档题.21(1);(2)20【解析】(1)利用即可得到答案;(2)利用直线参数方程的几何意义,.【详解】解:(1)由,得圆C的直角坐标方程为,即.(2)将直线l的参数方程代入圆C的直角坐标方程,得,即,设两交点A,B所对应的参数分别为,从而,则.【点睛】本题考查了极坐标方程与普通方程的互化、直线参数方程的几何意义等知识,考查学生的计算能力,是一道容易题.22(I) (II)【解析】(I)写出坐标,利用直线与直线垂直,得到.求出点的坐标代入,可得到的一个关系式,由此求得和的值,进而求得椭圆方程.(II)设出点的坐标,由此写出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗领域的新机遇区块链技术的市场应用与前景
- 医疗设备操作规范与质量控制
- 医疗大数据分析在医疗服务中的应用
- 2025年试用期转正工作总结模版
- 医疗大数据下的患者满意度分析
- AI技术在手术辅助系统中的伦理边界探讨
- 医学伦理在中药治疗技术传播中的作用研究
- 生产部门2025年度工作总结模版
- 代课老师聘用合同范例
- 医患沟通艺术与销售沟通技巧共通点解析
- (新版)妊娠期恶心呕吐及妊娠剧吐管理指南解读
- 小学生涯回顾分享模板
- 《MOFs材料介绍图》课件
- DBJ03-107-2019 房屋建筑和市政工程施工危险性较大的分部分项工程安全管理规范
- 小学四年级阅读训练10篇+答案-四年级阅读理解
- 2025年贵州中考二轮道德与法治专题复习 题型三 判断与分析
- 机关财务课件
- 2024年11月时事政治热点(国内+国际)
- 《烈士陵园游》课件
- 现在医疗现状
- 《零星工程项目监理方案》
评论
0/150
提交评论