2022年河北省藁城市高三3月份第一次模拟考试数学试卷含解析_第1页
2022年河北省藁城市高三3月份第一次模拟考试数学试卷含解析_第2页
2022年河北省藁城市高三3月份第一次模拟考试数学试卷含解析_第3页
2022年河北省藁城市高三3月份第一次模拟考试数学试卷含解析_第4页
2022年河北省藁城市高三3月份第一次模拟考试数学试卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1某学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为的样本,其频率分布直方图如图所示,其中支出在(单位:元)的同学有34人,则的值为( )A100B1000C90D

2、902在中,“”是“”的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件3函数的图象大致是( )ABCD4是的( )条件A充分不必要B必要不充分C充要D既不充分也不必要5如图在直角坐标系中,过原点作曲线的切线,切点为,过点分别作、轴的垂线,垂足分别为、,在矩形中随机选取一点,则它在阴影部分的概率为( )ABCD6若函数,在区间上任取三个实数,均存在以,为边长的三角形,则实数的取值范围是( )ABCD7已知是定义在上的奇函数,且当时,若,则的解集是( )ABCD8如图示,三棱锥的底面是等腰直角三角形,且,则与面所成角的正弦值等于( )ABCD9已知集合,则( )AB

3、C或D10要得到函数的图象,只需将函数的图象( )A向右平移个单位B向右平移个单位C向左平移个单位D向左平移个单位11函数的部分图像如图所示,若,点的坐标为,若将函数向右平移个单位后函数图像关于轴对称,则的最小值为( )ABCD12已知函数,当时,不等式恒成立,则实数a的取值范围为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13记数列的前项和为,已知,且.若,则实数的取值范围为_.14函数的定义域为_.15已知四棱锥,底面四边形为正方形,四棱锥的体积为,在该四棱锥内放置一球,则球体积的最大值为_16正四棱柱中,.若是侧面内的动点,且,则与平面所成角的正切值的最大值为_.三、解

4、答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在,角、所对的边分别为、,已知.(1)求的值;(2)若,边上的中线,求的面积.18(12分)设函数,().(1)若曲线在点处的切线方程为,求实数a、m的值;(2)若对任意恒成立,求实数a的取值范围;(3)关于x的方程能否有三个不同的实根?证明你的结论.19(12分)已知直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程及曲线的直角坐标方程;(2)设点,直线与曲线交于两点,求的值.20(12分)已知三点在抛物线上.()当点的坐标为时,若直线

5、过点,求此时直线与直线的斜率之积;()当,且时,求面积的最小值.21(12分)在平面直角坐标系xOy中,椭圆C:x2a2+y2b2=1(ab0)的右准线方程为x2,且两焦点与短轴的一个顶点构成等腰直角三角形(1)求椭圆C的方程;(2)假设直线l:y=kx+m与椭圆C交于A,B两点若A为椭圆的上顶点,M为线段AB中点,连接OM并延长交椭圆C于N,并且ON=62OM,求OB的长;若原点O到直线l的距离为1,并且OAOB=,当4556时,求OAB的面积S的范围22(10分)已知函数(1)当时,求曲线在点的切线方程;(2)讨论函数的单调性参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小

6、题给出的四个选项中,只有一项是符合题目要求的。1A【解析】利用频率分布直方图得到支出在的同学的频率,再结合支出在(单位:元)的同学有34人,即得解【详解】由题意,支出在(单位:元)的同学有34人由频率分布直方图可知,支出在的同学的频率为故选:A【点睛】本题考查了频率分布直方图的应用,考查了学生概念理解,数据处理,数学运算的能力,属于基础题.2C【解析】由余弦函数的单调性找出的等价条件为,再利用大角对大边,结合正弦定理可判断出“”是“”的充分必要条件.【详解】余弦函数在区间上单调递减,且,由,可得,由正弦定理可得.因此,“”是“”的充分必要条件.故选:C.【点睛】本题考查充分必要条件的判定,同时

7、也考查了余弦函数的单调性、大角对大边以及正弦定理的应用,考查推理能力,属于中等题.3B【解析】根据函数表达式,把分母设为新函数,首先计算函数定义域,然后求导,根据导函数的正负判断函数单调性,对应函数图像得到答案.【详解】设,则的定义域为.,当,单增,当,单减,则.则在上单增,上单减,.选B.【点睛】本题考查了函数图像的判断,用到了换元的思想,简化了运算,同学们还可以用特殊值法等方法进行判断.4B【解析】利用充分条件、必要条件与集合包含关系之间的等价关系,即可得出。【详解】设对应的集合是,由解得且 对应的集合是 ,所以,故是的必要不充分条件,故选B。【点睛】本题主要考查充分条件、必要条件的判断方

8、法集合关系法。设 ,如果,则是的充分条件;如果B则是的充分不必要条件;如果,则是的必要条件;如果,则是的必要不充分条件。5A【解析】设所求切线的方程为,联立,消去得出关于的方程,可得出,求出的值,进而求得切点的坐标,利用定积分求出阴影部分区域的面积,然后利用几何概型概率公式可求得所求事件的概率.【详解】设所求切线的方程为,则,联立,消去得,由,解得,方程为,解得,则点,所以,阴影部分区域的面积为,矩形的面积为,因此,所求概率为.故选:A.【点睛】本题考查定积分的计算以及几何概型,同时也涉及了二次函数的切线方程的求解,考查计算能力,属于中等题.6D【解析】利用导数求得在区间上的最大值和最小,根据

9、三角形两边的和大于第三边列不等式,由此求得的取值范围.【详解】的定义域为,所以在上递减,在上递增,在处取得极小值也即是最小值,所以在区间上的最大值为.要使在区间上任取三个实数,均存在以,为边长的三角形,则需恒成立,且,也即,也即当、时,成立,即,且,解得.所以的取值范围是.故选:D【点睛】本小题主要考查利用导数研究函数的最值,考查恒成立问题的求解,属于中档题.7B【解析】利用函数奇偶性可求得在时的解析式和,进而构造出不等式求得结果.【详解】为定义在上的奇函数,.当时,为奇函数,由得:或;综上所述:若,则的解集为.故选:.【点睛】本题考查函数奇偶性的应用,涉及到利用函数奇偶性求解对称区间的解析式

10、;易错点是忽略奇函数在处有意义时,的情况.8A【解析】首先找出与面所成角,根据所成角所在三角形利用余弦定理求出所成角的余弦值,再根据同角三角函数关系求出所成角的正弦值.【详解】由题知是等腰直角三角形且,是等边三角形,设中点为,连接,可知,同时易知,所以面,故即为与面所成角,有,故.故选:A.【点睛】本题主要考查了空间几何题中线面夹角的计算,属于基础题.9D【解析】首先求出集合,再根据补集的定义计算可得;【详解】解:,解得,.故选:D【点睛】本题考查补集的概念及运算,一元二次不等式的解法,属于基础题.10D【解析】直接根据三角函数的图象平移规则得出正确的结论即可;【详解】解:函数,要得到函数的图

11、象,只需将函数的图象向左平移个单位故选:D【点睛】本题考查三角函数图象平移的应用问题,属于基础题11B【解析】根据图象以及题中所给的条件,求出和,即可求得的解析式,再通过平移变换函数图象关于轴对称,求得的最小值.【详解】由于,函数最高点与最低点的高度差为,所以函数的半个周期,所以,又,则有,可得,所以,将函数向右平移个单位后函数图像关于轴对称,即平移后为偶函数,所以的最小值为1,故选:B.【点睛】该题主要考查三角函数的图象和性质,根据图象求出函数的解析式是解决该题的关键,要求熟练掌握函数图象之间的变换关系,属于简单题目.12D【解析】由变形可得,可知函数在为增函数, 由恒成立,求解参数即可求得

12、取值范围.【详解】,即函数在时是单调增函数.则恒成立. .令,则时,单调递减,时单调递增.故选:D.【点睛】本题考查构造函数,借助单调性定义判断新函数的单调性问题,考查恒成立时求解参数问题,考查学生的分析问题的能力和计算求解的能力,难度较难.二、填空题:本题共4小题,每小题5分,共20分。13【解析】根据递推公式,以及之间的关系,即可容易求得,再根据数列的单调性,求得其最大值,则参数的范围可求.【详解】当时,解得.所以.因为,则,两式相减,可得,即,则.两式相减,可得.所以数列是首项为3,公差为2的等差数列,所以,则.令,则.当时,数列单调递减,而,故,即实数的取值范围为.故答案为:.【点睛】

13、本题考查由递推公式求数列的通项公式,涉及数列单调性的判断,属综合困难题.14【解析】由题意可得,解不等式可求【详解】解:由题意可得,解可得,故答案为【点睛】本题主要考查了函数的定义域的求解,属于基础题15【解析】由题知,该四棱锥为正四棱锥,作出该正四棱锥的高和斜高,连接,则球心O必在的边上,设,由球与四棱锥的内切关系可知,设,用和表示四棱锥的体积,解得和的关系,进而表示出内切球的半径,并求出半径的最大值,进而求出球的体积的最大值.【详解】设,由球O内切于四棱锥可知,则,球O的半径,当且仅当时,等号成立,此时.故答案为:.【点睛】本题考查了棱锥的体积问题,内切球问题,考查空间想象能力,属于较难的

14、填空压轴题.162.【解析】如图,以为原点建立空间直角坐标系,设点,由得,证明为与平面所成角,令,用三角函数表示出,求解三角函数的最大值得到结果.【详解】如图,以为原点建立空间直角坐标系,设点,则,又,得即;又平面,为与平面所成角,令,当时,最大,即与平面所成角的正切值的最大值为2.故答案为:2【点睛】本题主要考查了立体几何中的动点问题,考查了直线与平面所成角的计算.对于这类题,一般是建立空间直角坐标,在动点坐标内引入参数,将最值问题转化为函数的最值问题求解,考查了学生的运算求解能力和直观想象能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17 (1) (2)答案不唯一,见

15、解析【解析】(1)由题意根据和差角的三角函数公式可得,再根据同角三角函数基本关系可得的值;(2)在中,由余弦定理可得,解方程分别由三角形面积公式可得答案【详解】解:(1)在中,因为,又已知,所以,因为,所以,于是.所以.(2)在中,由余弦定理得,得解得或,当时,的面积,当时,的面积.【点睛】本题考查正余弦定理理解三角形,涉及三角形的面积公式和分类讨论思想,属于中档题18(1),;(2);(3)不能,证明见解析【解析】(1)求出,结合导数的几何意义即可求解;(2)构造,则原题等价于对任意恒成立,即时,利用导数求最值即可,值得注意的是,可以通过代特殊值,由求出的范围,再研究该范围下单调性;(3)构

16、造并进行求导,研究单调性,结合函数零点存在性定理证明即可.【详解】(1),曲线在点处的切线方程为,解得.(2)记,整理得,由题知,对任意恒成立,对任意恒成立,即时,解得,当时,对任意,即在单调递增,此时,实数的取值范围为.(3)关于的方程不可能有三个不同的实根,以下给出证明:记,则关于的方程有三个不同的实根,等价于函数有三个零点,当时,记,则,在单调递增,即,在单调递增,至多有一个零点;当时,记,则,在单调递增,即在单调递增,至多有一个零点,则至多有两个单调区间,至多有两个零点.因此,不可能有三个零点.关于的方程不可能有三个不同的实根.【点睛】本题考查了导数几何意义的应用、利用导数研究函数单调

17、性以及函数的零点存在性定理,考查了转化与化归的数学思想,属于难题.19(1);(2)【解析】(1)直接利用转换关系的应用,把参数方程极坐标方程和直角坐标方程之间进行转换.(2)利用(1)的结论,进一步利用一元二次方程根和系数的关系式的应用求出结果.【详解】解:(1)直线的参数方程为(为参数),转换为直角坐标方程为.曲线的极坐标方程为.转换为,转换为直角坐标方程为.(2)直线的参数方程为(为参数),转换为标准式为(为参数),代入圆的直角坐标方程整理得,所以,.【点睛】本题属于基础本题考查的知识要点:主要考查极坐标,参数方程与普通方程互化,及求三角形面积需要熟记极坐标系与参数方程的公式,及与解析几

18、何相关的直线与曲线位置关系的一些解题思路20();()16.【解析】()设出直线的方程并代入抛物线方程,利用韦达定理以及斜率公式,变形可得;()利用,的斜率,求得的坐标,再用基本不等式求得的最小值,从而可得三角形的面积的最小值【详解】解:()设直线的方程为. 联立方程组,得,故,. 所以;()不妨设的三个顶点中的两个顶点在轴右侧(包括轴),设,的斜率为,又,则, 因为,所以由 得,(且)从而当且仅当时取“”号,从而,所以面积的最小值为.【点睛】本题考查了直线与抛物线的综合,属于中档题21(1)x22+y2=1;(2)OB=173;106,225.【解析】(1)根据椭圆的几何性质可得到a2,b2

19、;(2)联立直线和椭圆,利用弦长公式可求得弦长AB,利用点到直线的距离公式求得原点到直线l的距离,从而可求得三角形面积,再用单调性求最值可得值域【详解】(1)因为两焦点与短轴的一个顶点的连线构成等腰直角三角形,所以a=2c,又由右准线方程为x=2,得到a2c=2,解得a=2,c=1,所以b2=a2-c2=1 所以,椭圆C的方程为x22+y2=1 (2)设B(x1,y1),而A(0,1),则M(x12,1+y12), ON=62OM, N(6x14,6(1+y1)4)因为点B,N都在椭圆上,所以x122+y12=13x1216+3(1+y1)28=1,将下式两边同时乘以83再减去上式,解得y1=

20、13,x12=169 所以OB=x12+y12=169+(13)2=173 由原点O到直线l的距离为1,得|m|1+k2=1,化简得:1+k2=m2 联立直线l的方程与椭圆C的方程:y=kx+mx22+y2=1,得(1+2k2)x2+4kmx+2m2-2=0设A(x1,y1),B(x2,y2),则x1+x2=-4km1+2k2,x1x2=2m2-21+2k2,且=8k20 OAOB=x1x2+y1y2=x1x2+(kx1+m)(kx2+m)=(1+k2)x1x2+km(x1+x2)+m2=(1+k2)2m2-21+2k2-4k2m21+2k2+m2=2m2-2+2k2m2-2k2-4k2m2+m2+2k2m21+2k2 =3m2-2-2k21+2k2=1+k21+2k2=,所以k2=1-2-1OAB的面积S=121AB=121+k2|x1-x2|=121+k2(x1+x2)2-4x1x2=121+k28k2(1+2k2)2=2(1+k2)k2(1+2k2)2=2(1-),因为S=2(1-)在45,56为单调减函数,并且当=45时,S=225,当=56时,S

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论