




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,若,则的值等于( )ABCD2抛掷一枚质地均匀的硬币,每次正反面出现的概率相同,连续
2、抛掷5次,至少连续出现3次正面朝上的概率是( )ABCD3如下的程序框图的算法思路源于我国古代数学名著九章算术中的“更相减损术”执行该程序框图,若输入的a,b分别为176,320,则输出的a为( )A16B18C20D154某工厂利用随机数表示对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,599,600.从中抽取60个样本,下图提供随机数表的第4行到第6行:若从表中第6行第6列开始向右读取数据,则得到的第6个样本编号是( )A324B522C535D5785已知双曲线(,),以点()为圆心,为半径作圆,圆与双曲线的一条渐近线交于,两点,若,则的离心率为(
3、)ABCD6过抛物线的焦点且与的对称轴垂直的直线与交于,两点,为的准线上的一点,则的面积为( )A1B2C4D87设集合,则( )ABCD8一辆邮车从地往地运送邮件,沿途共有地,依次记为,(为地,为地)从地出发时,装上发往后面地的邮件各1件,到达后面各地后卸下前面各地发往该地的邮件,同时装上该地发往后面各地的邮件各1件,记该邮车到达,各地装卸完毕后剩余的邮件数记为则的表达式为( )ABCD9已知数列满足:)若正整数使得成立,则( )A16B17C18D1910已知,是双曲线的两个焦点,过点且垂直于轴的直线与相交于,两点,若,则的内切圆的半径为( )ABCD11已知定义在上函数的图象关于原点对称
4、,且,若,则( )A0B1C673D67412已知,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在中,角所对的边分别为,的平分线交于点D,且,则的最小值为_14定义,已知,若恰好有3个零点,则实数的取值范围是_.15已知等比数列满足,则该数列的前5项的和为_.16若x,y满足,则的最小值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知抛物线与直线.(1)求抛物线C上的点到直线l距离的最小值;(2)设点是直线l上的动点,是定点,过点P作抛物线C的两条切线,切点为A,B,求证A,Q,B共线;并在时求点P坐标.18(12分)已知函数,其中
5、e为自然对数的底数.(1)讨论函数的单调性;(2)用表示中较大者,记函数.若函数在上恰有2个零点,求实数a的取值范围.19(12分)如图,在三棱锥ABCD中,ABAD,BCBD,平面ABD平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EFAD.求证:(1)EF平面ABC;(2)ADAC.20(12分)某商场举行有奖促销活动,顾客购买每满元的商品即可抽奖一次.抽奖规则如下:抽奖者掷各面标有点数的正方体骰子次,若掷得点数大于,则可继续在抽奖箱中抽奖;否则获得三等奖,结束抽奖,已知抽奖箱中装有个红球与个白球,抽奖者从箱中任意摸出个球,若个球均为红球,则获得一等奖,若个球为个红球和个
6、白球,则获得二等奖,否则,获得三等奖(抽奖箱中的所有小球,除颜色外均相同).若,求顾客参加一次抽奖活动获得三等奖的概率;若一等奖可获奖金元,二等奖可获奖金元,三等奖可获奖金元,记顾客一次抽奖所获得的奖金为,若商场希望的数学期望不超过元,求的最小值.21(12分)在直角坐标系中,是过定点且倾斜角为的直线;在极坐标系(以坐标原点为极点,以轴非负半轴为极轴,取相同单位长度)中,曲线的极坐标方程为.(1)写出直线的参数方程,并将曲线的方程化为直角坐标方程;(2)若曲线与直线相交于不同的两点,求的取值范围.22(10分)武汉有“九省通衢”之称,也称为“江城”,是国家历史文化名城.其中著名的景点有黄鹤楼、
7、户部巷、东湖风景区等等.(1)为了解“五一”劳动节当日江城某旅游景点游客年龄的分布情况,从年龄在22岁到52岁的游客中随机抽取了1000人,制成了如图的频率分布直方图:现从年龄在内的游客中,采用分层抽样的方法抽取10人,再从抽取的10人中随机抽取4人,记4人中年龄在内的人数为,求;(2)为了给游客提供更舒适的旅游体验,该旅游景点游船中心计划在2020年劳动节当日投入至少1艘至多3艘型游船供游客乘坐观光.由2010到2019这10年间的数据资料显示每年劳动节当日客流量(单位:万人)都大于1.将每年劳动节当日客流量数据分成3个区间整理得表:劳动节当日客流量频数(年)244以这10年的数据资料记录的
8、3个区间客流量的频率作为每年客流量在该区间段发生的概率,且每年劳动节当日客流量相互独立.该游船中心希望投入的型游船尽可能被充分利用,但每年劳动节当日型游船最多使用量(单位:艘)要受当日客流量(单位:万人)的影响,其关联关系如下表:劳动节当日客流量型游船最多使用量123若某艘型游船在劳动节当日被投入且被使用,则游船中心当日可获得利润3万元;若某艘型游船劳动节当日被投入却不被使用,则游船中心当日亏损0.5万元.记(单位:万元)表示该游船中心在劳动节当日获得的总利润,的数学期望越大游船中心在劳动节当日获得的总利润越大,问该游船中心在2020年劳动节当日应投入多少艘型游船才能使其当日获得的总利润最大?
9、参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】由函数的奇偶性可得,【详解】其中为奇函数,也为奇函数也为奇函数故选:B【点睛】函数奇偶性的运用即得结果,小记,定义域关于原点对称时有:奇函数奇函数=奇函数;奇函数奇函数=偶函数;奇函数奇函数=偶函数;偶函数偶函数=偶函数;偶函数偶函数=偶函数;奇函数偶函数=奇函数;奇函数偶函数=奇函数2A【解析】首先求出样本空间样本点为个,再利用分类计数原理求出三个正面向上为连续的3个“1”的样本点个数,再求出重复数量,可得事件的样本点数,根据古典概型的概率计算公式即可求解.【详解】样本空
10、间样本点为个, 具体分析如下:记正面向上为1,反面向上为0,三个正面向上为连续的3个“1”,有以下3种位置1_ _,_1_,_ _1剩下2个空位可是0或1,这三种排列的所有可能分别都是,但合并计算时会有重复,重复数量为,事件的样本点数为:个故不同的样本点数为8个,.故选:A【点睛】本题考查了分类计数原理与分步计数原理,古典概型的概率计算公式,属于基础题3A【解析】根据题意可知最后计算的结果为的最大公约数.【详解】输入的a,b分别为,根据流程图可知最后计算的结果为的最大公约数,按流程图计算,易得176和320的最大公约数为16,故选:A.【点睛】本题考查的是利用更相减损术求两个数的最大公约数,难
11、度较易.4D【解析】因为要对600个零件进行编号,所以编号必须是三位数,因此按要求从第6行第6列开始向右读取数据,大于600的,重复出现的舍去,直至得到第六个编号.【详解】从第6行第6列开始向右读取数据,编号内的数据依次为:,因为535重复出现,所以符合要求的数据依次为,故第6个数据为578.选D.【点睛】本题考查了随机数表表的应用,正确掌握随机数表法的使用方法是解题的关键.5A【解析】求出双曲线的一条渐近线方程,利用圆与双曲线的一条渐近线交于两点,且,则可根据圆心到渐近线距离为列出方程,求解离心率【详解】不妨设双曲线的一条渐近线与圆交于,因为,所以圆心到的距离为:,即,因为,所以解得故选A【
12、点睛】本题考查双曲线的简单性质的应用,考查了转化思想以及计算能力,属于中档题对于离心率求解问题,关键是建立关于的齐次方程,主要有两个思考方向,一方面,可以从几何的角度,结合曲线的几何性质以及题目中的几何关系建立方程;另一方面,可以从代数的角度,结合曲线方程的性质以及题目中的代数的关系建立方程.6C【解析】设抛物线的解析式,得焦点为,对称轴为轴,准线为,这样可设点坐标为,代入抛物线方程可求得,而到直线的距离为,从而可求得三角形面积【详解】设抛物线的解析式,则焦点为,对称轴为轴,准线为,直线经过抛物线的焦点,是与的交点,又轴,可设点坐标为,代入,解得,又点在准线上,设过点的的垂线与交于点,.故应选
13、C.【点睛】本题考查抛物线的性质,解题时只要设出抛物线的标准方程,就能得出点坐标,从而求得参数的值本题难度一般7C【解析】解对数不等式求得集合,由此求得两个集合的交集.【详解】由,解得,故.依题意,所以.故选:C【点睛】本小题主要考查对数不等式的解法,考查集合交集的概念和运算,属于基础题.8D【解析】根据题意,分析该邮车到第站时,一共装上的邮件和卸下的邮件数目,进而计算可得答案【详解】解:根据题意,该邮车到第站时,一共装上了件邮件,需要卸下件邮件,则,故选:D【点睛】本题主要考查数列递推公式的应用,属于中档题9B【解析】计算,故,解得答案.【详解】当时,即,且.故,故.故选:.【点睛】本题考查
14、了数列的相关计算,意在考查学生的计算能力和对于数列公式方法的综合应用.10B【解析】设左焦点的坐标, 由AB的弦长可得a的值,进而可得双曲线的方程,及左右焦点的坐标,进而求出三角形ABF2的面积,再由三角形被内切圆的圆心分割3个三角形的面积之和可得内切圆的半径.【详解】由双曲线的方程可设左焦点,由题意可得,由,可得,所以双曲线的方程为: 所以,所以三角形ABF2的周长为设内切圆的半径为r,所以三角形的面积,所以,解得,故选:B【点睛】本题考查求双曲线的方程和双曲线的性质及三角形的面积的求法,内切圆的半径与三角形长周长的一半之积等于三角形的面积可得半径的应用,属于中档题.11B【解析】由题知为奇
15、函数,且可得函数的周期为3,分别求出知函数在一个周期内的和是0,利用函数周期性对所求式子进行化简可得.【详解】因为为奇函数,故;因为,故,可知函数的周期为3;在中,令,故,故函数在一个周期内的函数值和为0,故.故选:B.【点睛】本题考查函数奇偶性与周期性综合问题. 其解题思路:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解12C【解析】利用诱导公式得,再利用倍角公式,即可得答案.【详解】由可得,.故选:C.【点睛】本题考查诱导公式、倍角公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,
16、求解时注意三角函数的符号.二、填空题:本题共4小题,每小题5分,共20分。139【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,,由角平分线性质和三角形面积公式得,化简得,因此当且仅当时取等号,则的最小值为.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.14【解析】根据题意,分类讨论求解,当时,根据指数函数的图象和性质无零点,不合题意;当时,令,得,令 ,得或 ,再分当,两种情况讨论求解.【详解】
17、由题意得:当时,在轴上方,且为增函数,无零点,至多有两个零点,不合题意;当时,令,得,令 ,得或 ,如图所示:当时,即时,要有3个零点,则,解得;当时,即时,要有3个零点,则,令,所以在是减函数,又,要使,则须,所以.综上:实数的取值范围是.故答案为:【点睛】本题主要考查二次函数,指数函数的图象和分段函数的零点问题,还考查了分类讨论的思想和运算求解的能力,利用导数判断函数单调性,属于中档题.1531【解析】设,可化为,得,165【解析】先作出可行域,再做直线,平移,找到使直线在y轴上截距最小的点,代入即得。【详解】作出不等式组表示的平面区域,如图,令,则,作出直线,平移直线,由图可得,当直线经
18、过C点时,直线在y轴上的截距最小,由,可得,因此的最小值为.故答案为:4【点睛】本题考查不含参数的线性规划问题,是基础题。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2)证明见解析,或【解析】(1)根据点到直线的公式结合二次函数的性质即可求出;(2)设,表示出直线,的方程,利用表示出,即可求定点的坐标【详解】(1)设抛物线上点的坐标为,则,时取等号),则抛物线上的点到直线距离的最小值;(2)设,直线,的方程为分别为,由两条直线都经过点点得,为方程的两根,直线的方程为,共线又,解,点,是直线上的动点,时,时,或【点睛】本题考查抛物线的方程的求法,考查直线方程的求法
19、,考查直线过定点的解法,意在考查学生对这些知识的理解掌握水平和分析推理能力18(1)函数的单调递增区间为和,单调递减区间为;(2).【解析】(1)由题可得,结合的范围判断的正负,即可求解;(2)结合导数及函数的零点的判定定理,分类讨论进行求解【详解】(1),当时,函数在内单调递增;当时,令,解得或,当或时,则单调递增,当时,则单调递减,函数的单调递增区间为和,单调递减区间为(2)()当时,所以在上无零点;()当时,若,即,则是的一个零点;若,即,则不是的零点()当时,所以此时只需考虑函数在上零点的情况,因为,所以当时,在上单调递增。又,所以()当时,在上无零点;()当时,又,所以此时在上恰有一
20、个零点; 当时,令,得,由,得;由,得,所以在上单调递减,在上单调递增,因为,所以此时在上恰有一个零点,综上,【点睛】本题考查利用导数求函数单调区间,考查利用导数处理零点个数问题,考查运算能力,考查分类讨论思想19(1)见解析(2)见解析【解析】试题分析:(1)先由平面几何知识证明,再由线面平行判定定理得结论;(2)先由面面垂直性质定理得平面,则,再由ABAD及线面垂直判定定理得AD平面ABC,即可得ADAC试题解析:证明:(1)在平面内,因为ABAD,所以.又因为平面ABC,平面ABC,所以EF平面ABC.(2)因为平面ABD平面BCD,平面平面BCD=BD, 平面BCD,所以平面.因为平面
21、,所以 .又ABAD,平面ABC,平面ABC,所以AD平面ABC,又因为AC平面ABC,所以ADAC.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直20;.【解析】设顾客获得三等奖为事件,因为顾客掷得点数大于的概率为,顾客掷得点数小于,然后抽将得三等奖的概率为,求出;由题意可知,随机变量的可能取值为,相应求出概率,求出期望,化简得,由题意可知,即,求出的最小值.【详解】设顾客获得三等奖为事件,因为顾客掷得点数大于的概率为,顾客掷得点数小于,然后抽将得三等奖的概率为,所以;由题意可知,随机变量的可能取值为, 且,所以随机变量的数学期望,化简得,由题意可知,即,化简得,因为,解得,即的最小值为.【点睛】本题主要考查概率和期望的求法,属于常考题.21(1)(为参数),;(2)【解析】分析:(1)直线的参数方程为(为参数),其中表示之间的距离,而极坐标方程可化为,从而的直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025恒丰银行重庆分行社会招聘(5.22截止)模拟试卷及一套完整答案详解
- 2025北京石景山区招聘社区工作者62人考前自测高频考点模拟试题及一套完整答案详解
- 2025福建三明市教育局华东师范大学附属三明中学招聘紧缺急需专业工作人员18人考前自测高频考点模拟试题及答案详解(有一套)
- 辽宁省朝阳市多校2024-2025学年高一下学期6月联合考试地理试卷(解析版)
- 一次勇敢的挑战记事类作文9篇
- 2025年宝鸡千阳县中医医院招聘(15人)考前自测高频考点模拟试题及1套参考答案详解
- 2025广西贵港市公安局招聘警务辅助人员50人模拟试卷及答案详解(名师系列)
- 2025年嘉兴市秀洲区教育体育局所属事业单位公开选聘工作人员2人考前自测高频考点模拟试题及1套完整答案详解
- 2025广西贺州市人民医院招聘残障人士人员考前自测高频考点模拟试题及答案详解1套
- 多功能客户服务响应系统
- DB4405-T 303-2023 狮头鹅屠宰操作规程
- 经合组织成员国
- 浅谈如何做好危化品安全管控工作
- 人工智能技术及应用习题答案题库
- 县中医院妇科重点专科建设汇报
- 坚持人民至上 工会研讨发言
- 美学原理全套教学课件
- 期末复习(课件)新思维英语四年级上册
- 子宫脱垂试题及答案
- GB/T 90.1-2023紧固件验收检查
- 中国政治思想史复习资料
评论
0/150
提交评论