




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若为虚数单位,网格纸上小正方形的边长为1,图中复平面内点表示复数,则表示复数的点是( )AEBFCGDH2已知复数z,则复数z的虚部为( )ABCiDi3已知,且,则的值为( )ABCD4将函数图象上所有点向左平移个单位长度后得到函数的
2、图象,如果在区间上单调递减,那么实数的最大值为( )ABCD5已知双曲线的左、右焦点分别为,圆与双曲线在第一象限内的交点为M,若则该双曲线的离心率为A2B3CD6已知函数f(x)=xex2+axex-a有三个不同的零点x1,x2,x3 (其中x1x20在0,上的值域为32,3,则实数的取值范围为( )A16,13B13,23C16,+D12,238的展开式中的系数为( )ABCD9设为等差数列的前项和,若,则的最小值为( )ABCD10已知双曲线的右焦点为为坐标原点,以为直径的圆与双 曲线的一条渐近线交于点及点,则双曲线的方程为( )ABCD11已知角的终边与单位圆交于点,则等于( )ABCD
3、12已知函数,其中表示不超过的最大正整数,则下列结论正确的是( )A的值域是B是奇函数C是周期函数D是增函数二、填空题:本题共4小题,每小题5分,共20分。13已知,复数且(为虚数单位),则_,_14的展开式中,的系数为_(用数字作答).15函数的最小正周期是_,单调递增区间是_.16已知随机变量,且,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某大型单位举行了一次全体员工都参加的考试,从中随机抽取了20人的分数.以下茎叶图记录了他们的考试分数(以十位数字为茎,个位数字为叶):若分数不低于95分,则称该员工的成绩为“优秀”.(1)从这20人中任取3人,求恰有
4、1人成绩“优秀”的概率;(2)根据这20人的分数补全下方的频率分布表和频率分布直方图,并根据频率分布直方图解决下面的问题.组别分组频数频率1234估计所有员工的平均分数(同一组中的数据用该组区间的中点值作代表);若从所有员工中任选3人,记表示抽到的员工成绩为“优秀”的人数,求的分布列和数学期望.18(12分)已知函数.(1)解不等式;(2)记函数的最大值为,若,证明:.19(12分)如图,在平面四边形中,.(1)求;(2)求四边形面积的最大值.20(12分)己知圆F1:(x+1)1 +y1= r1(1r3),圆F1:(x-1)1+y1= (4-r)1(1)证明:圆F1与圆F1有公共点,并求公共
5、点的轨迹E的方程;(1)已知点Q(m,0)(m0),过点E斜率为k(k0)的直线与()中轨迹E相交于M,N两点,记直线QM的斜率为k1,直线QN的斜率为k1,是否存在实数m使得k(k1+k1)为定值?若存在,求出m的值,若不存在,说明理由21(12分)在四棱椎中,四边形为菱形,分别为,中点.(1)求证:;(2)求平面与平面所成锐二面角的余弦值.22(10分)已知与有两个不同的交点,其横坐标分别为().(1)求实数的取值范围;(2)求证:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】由于在复平面内点的坐标为,所以,然后
6、将代入化简后可找到其对应的点.【详解】由,所以,对应点.故选:C【点睛】此题考查的是复数与复平面内点的对就关系,复数的运算,属于基础题.2B【解析】利用复数的运算法则、虚部的定义即可得出【详解】,则复数z的虚部为.故选:B.【点睛】本题考查了复数的运算法则、虚部的定义,考查了推理能力与计算能力,属于基础题.3A【解析】由及得到、,进一步得到,再利用两角差的正切公式计算即可.【详解】因为,所以,又,所以,所以.故选:A.【点睛】本题考查三角函数诱导公式、二倍角公式以及两角差的正切公式的应用,考查学生的基本计算能力,是一道基础题.4B【解析】根据条件先求出的解析式,结合三角函数的单调性进行求解即可
7、.【详解】将函数图象上所有点向左平移个单位长度后得到函数的图象,则,设,则当时,即,要使在区间上单调递减,则得,得,即实数的最大值为,故选:B.【点睛】本小题主要考查三角函数图象变换,考查根据三角函数的单调性求参数,属于中档题.5D【解析】本题首先可以通过题意画出图像并过点作垂线交于点,然后通过圆与双曲线的相关性质判断出三角形的形状并求出高的长度,的长度即点纵坐标,然后将点纵坐标带入圆的方程即可得出点坐标,最后将点坐标带入双曲线方程即可得出结果。【详解】根据题意可画出以上图像,过点作垂线并交于点,因为,在双曲线上,所以根据双曲线性质可知,即,因为圆的半径为,是圆的半径,所以,因为,所以,三角形
8、是直角三角形,因为,所以,即点纵坐标为,将点纵坐标带入圆的方程中可得,解得,将点坐标带入双曲线中可得,化简得,故选D。【点睛】本题考查了圆锥曲线的相关性质,主要考察了圆与双曲线的相关性质,考查了圆与双曲线的综合应用,考查了数形结合思想,体现了综合性,提高了学生的逻辑思维能力,是难题。6A【解析】令xex=t,构造g(x)=xex,要使函数f(x)=xex2+axex-a有三个不同的零点x1,x2,x3(其中x1x20,解得a0或a0,a-4两个情况分类讨论,可求出1-x1ex121-x2ex21-x3ex3的值.【详解】令xex=t,构造g(x)=xex,求导得g(x)=1-xex,当x0;当
9、x1时,g(x)0,故g(x)在-,1上单调递增,在1,+上单调递减,且x0时,g(x)0时,g(x)0,g(x)max=g(1)=1e,可画出函数g(x)的图象(见下图),要使函数f(x)=xex2+axex-a有三个不同的零点x1,x2,x3(其中x1x2x3),则方程t2+at-a=0需要有两个不同的根t1,t2(其中t10,解得a0或a0,即t1+t2=-a0t1t2=-a0,则t10t21e,则x10 x21x3,且gx2=gx3=t2,故1-x1ex121-x2ex21-x3ex3=1-t121-t22=1-t1+t2+t1t22=1+a-a2=1,若a4t1t2=-a4,由于g(
10、x)max=g(1)=1e,故t1+t22e4,故a-4不符合题意,舍去. 故选A. 【点睛】解决函数零点问题,常常利用数形结合、等价转化等数学思想.7A【解析】将fx整理为3sinx+3,根据x的范围可求得x+33,+3;根据f0=32,结合fx的值域和sinx的图象,可知2+323,解不等式求得结果.【详解】fx=sinx+6+cosx=sinxcos6+cosxsin6+cosx=32sinx+32cosx=3sinx+3当x0,时,x+33,+3又f0=3sin3=32,3sin23=32,3sin2=3由fx在0,上的值域为32,3 2+323解得:16,13本题正确选项:A【点睛】
11、本题考查利用正弦型函数的值域求解参数范围的问题,关键是能够结合正弦型函数的图象求得角的范围的上下限,从而得到关于参数的不等式.8C【解析】由题意,根据二项式定理展开式的通项公式,得展开式的通项为,则展开式的通项为,由,得,所以所求的系数为.故选C.点睛:此题主要考查二项式定理的通项公式的应用,以及组合数、整数幂的运算等有关方面的知识与技能,属于中低档题,也是常考知识点.在二项式定理的应用中,注意区分二项式系数与系数,先求出通项公式,再根据所求问题,通过确定未知的次数,求出,将的值代入通项公式进行计算,从而问题可得解.9C【解析】根据已知条件求得等差数列的通项公式,判断出最小时的值,由此求得的最
12、小值.【详解】依题意,解得,所以.由解得,所以前项和中,前项的和最小,且.故选:C【点睛】本小题主要考查等差数列通项公式和前项和公式的基本量计算,考查等差数列前项和最值的求法,属于基础题.10C【解析】根据双曲线方程求出渐近线方程:,再将点代入可得,连接,根据圆的性质可得,从而可求出,再由即可求解.【详解】由双曲线,则渐近线方程:, 连接,则,解得,所以,解得.故双曲线方程为.故选:C【点睛】本题考查了双曲线的几何性质,需掌握双曲线的渐近线求法,属于中档题.11B【解析】先由三角函数的定义求出,再由二倍角公式可求.【详解】解:角的终边与单位圆交于点,故选:B【点睛】考查三角函数的定义和二倍角公
13、式,是基础题.12C【解析】根据表示不超过的最大正整数,可构建函数图象,即可分别判断值域、奇偶性、周期性、单调性,进而下结论.【详解】由表示不超过的最大正整数,其函数图象为选项A,函数,故错误;选项B,函数为非奇非偶函数,故错误;选项C,函数是以1为周期的周期函数,故正确;选项D,函数在区间上是增函数,但在整个定义域范围上不具备单调性,故错误.故选:C【点睛】本题考查对题干的理解,属于函数新定义问题,可作出图象分析性质,属于较难题.二、填空题:本题共4小题,每小题5分,共20分。13 【解析】复数且,故答案为,1460【解析】根据二项式定理展开式通项,即可求得的系数.【详解】因为,所以,则所求
14、项的系数为.故答案为:60【点睛】本题考查了二项展开式通项公式的应用,指定项系数的求法,属于基础题.15 , 【解析】化简函数的解析式,利用余弦函数的图象和性质求解即可【详解】函数,最小正周期,令,可得,所以单调递增区间是,故答案为:,【点睛】本题主要考查了二倍角的公式的应用,余弦函数的图象与性质,属于中档题160.1【解析】根据原则,可得,简单计算,可得结果.【详解】由题可知:随机变量,则期望为所以故答案为:【点睛】本题考查正态分布的计算,掌握正态曲线的图形以及计算,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2)82,分布列见解析,【解析】(1)从
15、20人中任取3人共有种结果,恰有1人成绩“优秀”共有种结果,利用古典概型的概率计算公式计算即可;(2)平均数的估计值为各小矩形的组中值与其面积乘积的和;要注意服从的是二项分布,不是超几何分布,利用二项分布的分布列及期望公式求解即可.【详解】(1)设从20人中任取3人恰有1人成绩“优秀”为事件,则,所以,恰有1人“优秀”的概率为.(2)组别分组频数频率120.01260.03380.04440.02,估计所有员工的平均分为82的可能取值为0、1、2、3,随机选取1人是“优秀”的概率为,;的分布列为0123,数学期望.【点睛】本题考查古典概型的概率计算以及二项分布期望的问题,涉及到频率分布直方图、
16、平均数的估计值等知识,是一道容易题.18(1);(2)证明见解析【解析】(1)将函数整理为分段函数形式可得,进而分类讨论求解不等式即可;(2)先利用绝对值不等式的性质得到的最大值为3,再利用均值定理证明即可.【详解】(1)当时,恒成立,;当时,即,;当时,显然不成立,不合题意;综上所述,不等式的解集为.(2)由(1)知,于是由基本不等式可得 (当且仅当时取等号) (当且仅当时取等号)(当且仅当时取等号)上述三式相加可得(当且仅当时取等号),故得证.【点睛】本题考查解绝对值不等式和利用均值定理证明不等式,考查绝对值不等式的最值的应用,解题关键是掌握分类讨论解决带绝对值不等式的方法,考查了分析能力
17、和计算能力,属于中档题.19(1);(2)【解析】(1)根据同角三角函数式可求得,结合正弦和角公式求得,即可求得,进而由三角函数(2)设根据余弦定理及基本不等式,可求得的最大值,结合三角形面积公式可求得的最大值,即可求得四边形面积的最大值.【详解】(1),则由同角三角函数关系式可得,则 ,则,所以.(2)设在中由余弦定理可得,代入可得,由基本不等式可知,即,当且仅当时取等号,由三角形面积公式可得,所以四边形面积的最大值为.【点睛】本题考查了正弦和角公式化简三角函数式的应用,余弦定理及不等式式求最值的综合应用,属于中档题.20(1)见解析,(1)存在,【解析】(1)求出圆和圆的圆心和半径,通过圆
18、F1与圆F1有公共点求出的范围,从而根据可得点的轨迹,进而求出方程;(1)过点且斜率为的直线方程为,设,联立直线方程和椭圆方程,根据韦达定理以及,可得,根据其为定值,则有,进而可得结果.【详解】(1)因为,所以,因为圆的半径为,圆的半径为,又因为,所以,即,所以圆与圆有公共点, 设公共点为,因此,所以点的轨迹是以,为焦点的椭圆,所以,即轨迹的方程为;(1)过点且斜率为的直线方程为,设,由消去得到,则, 因为,所以, 将式代入整理得因为,所以当时,即时,.即存在实数使得.【点睛】本题考查椭圆定理求椭圆方程,考查椭圆中的定值问题,灵活应用韦达定理进行计算是关键,并且观察出取定值的条件也很重要,考查了学生分析能力
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 眉山职业技术学院《外国语语音与歌唱》2023-2024学年第二学期期末试卷
- 宁波诺丁汉大学《岩溶学》2023-2024学年第二学期期末试卷
- 南京传媒学院《大学外语(一)》2023-2024学年第一学期期末试卷
- 四川省凉山州西昌市2025年初三月考试题(二)语文试题试卷含解析
- 内江市隆昌县2024-2025学年数学三下期末质量跟踪监视试题含解析
- 上海电机学院《数字游戏合成》2023-2024学年第二学期期末试卷
- 山西省(朔州地区)市级名校2024-2025学年初三4月期中练习(二模)(理、文合卷)数学试题含解析
- 山东省枣庄市部分重点高中2025年高三七校联考历史试题试卷含解析
- 南京科技职业学院《大学英语I(艺体类)》2023-2024学年第一学期期末试卷
- 江苏卫生健康职业学院《构筑物与公共艺术》2023-2024学年第二学期期末试卷
- GB/T 14981-2009热轧圆盘条尺寸、外形、重量及允许偏差
- 绳据法钢筋混凝土护栏切割破除方案计划
- 高压开关柜基础知识培训课件
- 企业临时用工合同范本(5篇)
- 2023年武汉民政职业学院单招考试面试模拟试题及答案解析
- 中国军事发展简述课件
- 碧桂园物业案场私宴接待操作规程
- 核医学工作中辐射防护课件
- 路基路面平整度试验检测记录表(三米直尺法)
- GB-T 1040.2-2022 塑料 拉伸性能的测定 第2部分:模塑和挤塑塑料的试验条件
- 广东开放大学计算机应用技术(互联网营销)专业毕业设计0
评论
0/150
提交评论