




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知实数满足线性约束条件,则的取值范围为( )A(-2,-1B(-1,4C-2,4)D0,42已知向量与的夹角为,定义为与的“向量积”,且是一个向量,它的长度,若,则( )
2、ABC6D3已知中内角所对应的边依次为,若,则的面积为( )ABCD4已知等差数列中,若,则此数列中一定为0的是( )ABCD5已知复数z满足(其中i为虚数单位),则复数z的虚部是( )AB1CDi6若、满足约束条件,则的最大值为( )ABCD7如图,在直角梯形ABCD中,ABDC,ADDC,ADDC2AB,E为AD的中点,若,则的值为()A BCD8关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验受其启发,我们也可以通过设计下面的实验来估计的值:先请全校名同学每人随机写下一个都小于的正实数对;再统计两数能与构成钝角三角形三边的数对的个数;最后再根据统计数估计的值
3、,那么可以估计的值约为( )ABCD9如图,正方体的底面与正四面体的底面在同一平面上,且,若正方体的六个面所在的平面与直线相交的平面个数分别记为,则下列结论正确的是()ABCD10抛掷一枚质地均匀的硬币,每次正反面出现的概率相同,连续抛掷5次,至少连续出现3次正面朝上的概率是( )ABCD11的展开式中含的项的系数为( )AB60C70D8012等差数列中,则数列前6项和为()A18B24C36D72二、填空题:本题共4小题,每小题5分,共20分。13双曲线的焦点坐标是_,渐近线方程是_.14若椭圆:的一个焦点坐标为,则的长轴长为_15已知双曲线的右准线与渐近线的交点在抛物线上,则实数的值为_
4、.16甲,乙两队参加关于“一带一路”知识竞赛,甲队有编号为1,2,3的三名运动员,乙队有编号为1,2,3,4的四名运动员,若两队各出一名队员进行比赛,则出场的两名运动员编号相同的概率为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知关于的不等式解集为().(1)求正数的值;(2)设,且,求证:.18(12分)已知直线l的极坐标方程为,圆C的参数方程为(为参数)(1)请分别把直线l和圆C的方程化为直角坐标方程;(2)求直线l被圆截得的弦长19(12分)棉花的纤维长度是评价棉花质量的重要指标,某农科所的专家在土壤环境不同的甲、乙两块实验地分别种植某品种的棉花,为
5、了评价该品种的棉花质量,在棉花成熟后,分别从甲、乙两地的棉花中各随机抽取21根棉花纤维进行统计,结果如下表:(记纤维长度不低于311的为“长纤维”,其余为“短纤维”)纤维长度甲地(根数)34454乙地(根数)112116(1)由以上统计数据,填写下面列联表,并判断能否在犯错误概率不超过1.125的前提下认为“纤维长度与土壤环境有关系”.甲地乙地总计长纤维短纤维总计附:(1);(2)临界值表;1111.151.1251.1111.1151.1112.7163.8415.1246.6357.87911.828(2)现从上述41根纤维中,按纤维长度是否为“长纤维”还是“短纤维”采用分层抽样的方法抽取
6、8根进行检测,在这8根纤维中,记乙地“短纤维”的根数为,求的分布列及数学期望.20(12分)联合国粮农组织对某地区最近10年的粮食需求量部分统计数据如下表:年份20102012201420162018需求量(万吨)236246257276286(1)由所给数据可知,年需求量与年份之间具有线性相关关系,我们以“年份2014”为横坐标,“需求量”为纵坐标,请完成如下数据处理表格:年份20140需求量2570(2)根据回归直线方程分析,2020年联合国粮农组织计划向该地区投放粮食300万吨,问是否能够满足该地区的粮食需求?参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为: ,.21
7、(12分)如图(1)五边形中,,将沿折到的位置,得到四棱锥,如图(2),点为线段的中点,且平面. (1)求证:平面平面; (2)若直线与所成角的正切值为,求直线与平面所成角的正弦值.22(10分)设椭圆E:(a,b0)过M(2,) ,N(,1)两点,O为坐标原点,(1)求椭圆E的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,若不存在说明理由参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】作出可行域,表示可行域内点与定点连线斜率,观察可行域可得最小值【详解
8、】作出可行域,如图阴影部分(含边界),表示可行域内点与定点连线斜率,过与直线平行的直线斜率为1,故选:B【点睛】本题考查简单的非线性规划解题关键是理解非线性目标函数的几何意义,本题表示动点与定点连线斜率,由直线与可行域的关系可得结论2D【解析】先根据向量坐标运算求出和,进而求出,代入题中给的定义即可求解.【详解】由题意,则,得,由定义知,故选:D.【点睛】此题考查向量的坐标运算,引入新定义,属于简单题目.3A【解析】由余弦定理可得,结合可得a,b,再利用面积公式计算即可.【详解】由余弦定理,得,由,解得,所以,.故选:A.【点睛】本题考查利用余弦定理解三角形,考查学生的基本计算能力,是一道容易
9、题.4A【解析】将已知条件转化为的形式,由此确定数列为的项.【详解】由于等差数列中,所以,化简得,所以为.故选:A【点睛】本小题主要考查等差数列的基本量计算,属于基础题.5A【解析】由虚数单位i的运算性质可得,则答案可求.【详解】解:,则化为,z的虚部为.故选:A.【点睛】本题考查了虚数单位i的运算性质、复数的概念,属于基础题.6C【解析】作出不等式组所表示的可行域,平移直线,找出直线在轴上的截距最大时对应的最优解,代入目标函数计算即可.【详解】作出满足约束条件的可行域如图阴影部分(包括边界)所示由,得,平移直线,当直线经过点时,该直线在轴上的截距最大,此时取最大值,即.故选:C.【点睛】本题
10、考查简单的线性规划问题,考查线性目标函数的最值,一般利用平移直线的方法找到最优解,考查数形结合思想的应用,属于基础题.7B【解析】建立平面直角坐标系,用坐标表示,利用,列出方程组求解即可.【详解】建立如图所示的平面直角坐标系,则D(0,0).不妨设AB1,则CDAD2,所以C(2,0),A(0,2),B(1,2),E(0,1), (2,2)(2,1)(1,2),解得则.故选:B【点睛】本题主要考查了由平面向量线性运算的结果求参数,属于中档题.8D【解析】由试验结果知对01之间的均匀随机数 ,满足,面积为1,再计算构成钝角三角形三边的数对,满足条件的面积,由几何概型概率计算公式,得出所取的点在圆
11、内的概率是圆的面积比正方形的面积,即可估计的值【详解】解:根据题意知,名同学取对都小于的正实数对,即,对应区域为边长为的正方形,其面积为,若两个正实数能与构成钝角三角形三边,则有,其面积;则有,解得故选:【点睛】本题考查线性规划可行域问题及随机模拟法求圆周率的几何概型应用问题. 线性规划可行域是一个封闭的图形,可以直接解出可行域的面积;求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到试验全部结果构成的平面图形,以便求解.9A【解析】根据题意,画出几何位置图形,由图形的位置关系分别求得的值,即可比较各选项.【详解】如下图所示,平面,从
12、而平面,易知与正方体的其余四个面所在平面均相交,平面,平面,且与正方体的其余四个面所在平面均相交,结合四个选项可知,只有正确.故选:A.【点睛】本题考查了空间几何体中直线与平面位置关系的判断与综合应用,对空间想象能力要求较高,属于中档题.10A【解析】首先求出样本空间样本点为个,再利用分类计数原理求出三个正面向上为连续的3个“1”的样本点个数,再求出重复数量,可得事件的样本点数,根据古典概型的概率计算公式即可求解.【详解】样本空间样本点为个, 具体分析如下:记正面向上为1,反面向上为0,三个正面向上为连续的3个“1”,有以下3种位置1_ _,_1_,_ _1剩下2个空位可是0或1,这三种排列的
13、所有可能分别都是,但合并计算时会有重复,重复数量为,事件的样本点数为:个故不同的样本点数为8个,.故选:A【点睛】本题考查了分类计数原理与分步计数原理,古典概型的概率计算公式,属于基础题11B【解析】展开式中含的项是由的展开式中含和的项分别与前面的常数项和项相乘得到,由二项式的通项,可得解【详解】由题意,展开式中含的项是由的展开式中含和的项分别与前面的常数项和项相乘得到,所以的展开式中含的项的系数为故选:B【点睛】本题考查了二项式系数的求解,考查了学生综合分析,数学运算的能力,属于基础题.12C【解析】由等差数列的性质可得,根据等差数列的前项和公式可得结果.【详解】等差数列中,即,故选C.【点
14、睛】本题主要考查了等差数列的性质以及等差数列的前项和公式的应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13 【解析】通过双曲线的标准方程,求解,即可得到所求的结果【详解】由双曲线,可得,则,所以双曲线的焦点坐标是,渐近线方程为:故答案为:;【点睛】本题主要考查了双曲线的简单性质的应用,考查了运算能力,属于容易题14【解析】由焦点坐标得从而可求出,继而得到椭圆的方程,即可求出长轴长.【详解】解:因为一个焦点坐标为,则,即,解得或 由表示的是椭圆,则,所以,则椭圆方程为 所以.故答案为:.【点睛】本题考查了椭圆的标准方程,考查了椭圆的几何意义.本题的易错点是忽略,从而未对 的
15、两个值进行取舍.15【解析】求出双曲线的渐近线方程,右准线方程,得到交点坐标代入抛物线方程求解即可【详解】解:双曲线的右准线,渐近线,双曲线的右准线与渐近线的交点,交点在抛物线上,可得:,解得故答案为【点睛】本题考查双曲线的简单性质以及抛物线的简单性质的应用,是基本知识的考查,属于基础题16【解析】出场运动员编号相同的事件显然有3种,计算出总的基本事件数,由古典概型概率计算公式求得答案.【详解】甲队有编号为1,2,3的三名运动员,乙队有编号为1,2,3,4的四名运动员,出场的两名运动员编号相同的事件数为3,出现的基本事件总数,则出场的两名运动员编号相同的概率为.故答案为:【点睛】本题考查求古典
16、概率的概率问题,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)1;(2)证明见解析.【解析】(1)将不等式化为,求解得出,根据解集确定正数的值;(2)利用基本不等式以及不等式的性质,得出,三式相加,即可得证.【详解】(1)解:不等式,即不等式,而,于是依题意得(2)证明:由(1)知,原不等式可化为,同理,三式相加得,当且仅当时取等号综上.【点睛】本题主要考查了求绝对值不等式中参数的范围以及基本不等式的应用,属于中档题.18(1)x2+y21(2)16【解析】(1)直接利用极坐标方程和参数方程公式化简得到答案.(2)圆心到直线的距离为,故弦长为得到答案.【详
17、解】(1),即,即,即.,故.(2)圆心到直线的距离为,故弦长为.【点睛】本题考查了极坐标方程和参数方程,圆的弦长,意在考查学生的计算能力和转化能力.19(1)在犯错误概率不超过的前提下认为“纤维长度与土壤环境有关系”(2)见解析【解析】试题分析:(1)可以根据所给表格填出列联表,利用列联表求出,结合所给数据,应用独立性检验知识可作出判断;(2)写出的所有可能取值,并求出对应的概率,可列出分布列并进一步求出的数学期望试题解析:()根据已知数据得到如下列联表:甲地乙地总计长纤维91625短纤维11415总计212141根据列联表中的数据,可得所以,在犯错误概率不超过的前提下认为“纤维长度与土壤环
18、境有关系” ()由表可知在8根中乙地“短纤维”的根数为,的可能取值为:1,1,2,3, , 的分布列为:1123 20(1)见解析;(2)能够满足.【解析】(1)根据表中数据,结合以“年份2014”为横坐标,“需求量”为纵坐标的要求即可完成表格;(2)根据表中及所给公式可求得线性回归方程,由线性回归方程预测2020年的粮食需求量,即可作出判断.【详解】(1)由所给数据和已知条件,对数据处理表格如下:年份2014024需求量25701929(2)由题意可知,变量与之间具有线性相关关系,由(1)中表格可得,.由上述计算结果可知,所求回归直线方程为,利用回归直线方程,可预测2020年的粮食需求量为:(万吨),因为,故能够满足该地区的粮食需求.【点睛】本题考查了线性回归直线的求法及预测应用,属于基础题.21(1)见解析(2)【解析】试题分析: (1)根据已知条件由线线垂直得出线面垂直,再根据面面垂直的判定定理证得成立; (2)通过已知条件求出各边长度,建系如图所示,求出平面的法向量,根据线面角公式代入坐标求得结果.试题解析:(1)证明:取的中点,连接,则,又,所以,则四边形为平行四边形,所以,又平面,平面,.由即及为的中点,可得为等边三角形,又,平面平面,平面平面.(2)解:,为直线与所成的角,由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学家长会校长发言
- 2024广告设计师能力要求分析试题及答案
- 2024年纺织工程师生产线优化试题及答案
- 国际商业美术设计师考试实际案例研究试题及答案
- 水泥实验考试题及答案
- 河南物理期中试题及答案
- hr证书考试题库及答案
- 下料工考试试题及答案
- 光伏站区动力电缆技术规范书
- 文字类考试题及答案
- 2024新版挂名法人免责协议完整版
- 小学群众满意度调查测评表
- (正式版)JTT 1497-2024 公路桥梁塔柱施工平台及通道安全技术要求
- 高血压药物治疗的循证医学证据
- python程序设计-说课
- MOOC 一生的健康锻炼-西南交通大学 中国大学慕课答案
- 示范村建设项目勘察设计后续服务的安排及保证措施
- 生肖专题-酉鸡集
- 施工现场临时用电安全检查表
- 2024年九省联考英语读后续写(原文解析范文)讲义高考英语而二轮复习
- 《钛合金锻造讲》课件
评论
0/150
提交评论