版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若集合,则( )ABCD2设为虚数单位,为复数,若为实数,则( )ABCD3已知函数是奇函数,则的值为( )A10
2、B9C7D14已知命题,那么为( )ABCD5年部分省市将实行“”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为ABCD6若复数,其中为虚数单位,则下列结论正确的是( )A的虚部为BC的共轭复数为D为纯虚数7已知定义在上的可导函数满足,若是奇函数,则不等式的解集是( )ABCD8若集合,则( )ABCD9已知点是双曲线上一点,若点到双曲线的两条渐近线的距离之积为,则双曲线的离心率为( )ABCD210若,则的值为( )ABCD11已知三棱锥的四个顶点都在球的球面上,平面,是边
3、长为的等边三角形,若球的表面积为,则直线与平面所成角的正切值为()ABCD12下边程序框图的算法源于我国古代的中国剩余定理.把运算“正整数除以正整数所得的余数是”记为“”,例如.执行该程序框图,则输出的等于( )A16B17C18D19二、填空题:本题共4小题,每小题5分,共20分。13从甲、乙等8名志愿者中选5人参加周一到周五的社区服务,每天安排一人,每人只参加一天.若要求甲、乙两人至少选一人参加,且当甲、乙两人都参加时,他们参加社区服务的日期不相邻,那么不同的安排种数为_.(用数字作答)14 “石头、剪子、布”是大家熟悉的二人游戏,其规则是:在石头、剪子和布中,二人各随机选出一种,若相同则
4、平局;若不同,则石头克剪子,剪子克布,布克石头.甲、乙两人玩一次该游戏,则甲不输的概率是_.15的展开式中,常数项为_;系数最大的项是_.16已知抛物线的焦点为,直线与抛物线相切于点,是上一点(不与重合),若以线段为直径的圆恰好经过,则点到抛物线顶点的距离的最小值是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,四边形为菱形,为与的交点,平面.(1)证明:平面平面;(2)若,三棱锥的体积为,求菱形的边长.18(12分)为调研高中生的作文水平.在某市普通高中的某次联考中,参考的文科生与理科生人数之比为,且成绩分布在的范围内,规定分数在50以上(含50)的作文
5、被评为“优秀作文”,按文理科用分层抽样的方法抽取400人的成绩作为样本,得到成绩的频率分布直方图,如图所示.其中构成以2为公比的等比数列.(1)求的值;(2)填写下面列联表,能否在犯错误的概率不超过0.01的情况下认为“获得优秀作文”与“学生的文理科”有关?文科生理科生合计获奖6不获奖合计400(3)将上述调查所得的频率视为概率,现从全市参考学生中,任意抽取2名学生,记“获得优秀作文”的学生人数为,求的分布列及数学期望.附:,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82819(12分)已知抛物线的顶
6、点为原点,其焦点关于直线的对称点为,且.若点为的准线上的任意一点,过点作的两条切线,其中为切点.(1)求抛物线的方程;(2)求证:直线恒过定点,并求面积的最小值.20(12分)已知函数,.(1)当时,求函数的值域;(2),求实数的取值范围.21(12分)已知点P在抛物线上,且点P的横坐标为2,以P为圆心,为半径的圆(O为原点),与抛物线C的准线交于M,N两点,且(1)求抛物线C的方程;(2)若抛物线的准线与y轴的交点为H过抛物线焦点F的直线l与抛物线C交于A,B,且,求的值22(10分)已知等比数列,其公比,且满足,和的等差中项是1()求数列的通项公式;()若,是数列的前项和,求使成立的正整数
7、的值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】用转化的思想求出中不等式的解集,再利用并集的定义求解即可【详解】解:由集合,解得,则故选:【点睛】本题考查了并集及其运算,分式不等式的解法,熟练掌握并集的定义是解本题的关键属于基础题2B【解析】可设,将化简,得到,由复数为实数,可得,解方程即可求解【详解】设,则.由题意有,所以.故选:B【点睛】本题考查复数的模长、除法运算,由复数的类型求解对应参数,属于基础题3B【解析】根据分段函数表达式,先求得的值,然后结合的奇偶性,求得的值.【详解】因为函数是奇函数,所以,.故选:
8、B【点睛】本题主要考查分段函数的解析式、分段函数求函数值,考查数形结合思想.意在考查学生的运算能力,分析问题、解决问题的能力.4B【解析】利用特称命题的否定分析解答得解.【详解】已知命题,那么是.故选:【点睛】本题主要考查特称命题的否定,意在考查学生对该知识的理解掌握水平,属于基础题.5B【解析】甲同学所有的选择方案共有种,甲同学同时选择历史和化学后,只需在生物、政治、地理三科中再选择一科即可,共有种选择方案,根据古典概型的概率计算公式,可得甲同学同时选择历史和化学的概率,故选B6D【解析】将复数整理为的形式,分别判断四个选项即可得到结果.【详解】的虚部为,错误;,错误;,错误;,为纯虚数,正
9、确本题正确选项:【点睛】本题考查复数的模长、实部与虚部、共轭复数、复数的分类的知识,属于基础题.7A【解析】构造函数,根据已知条件判断出的单调性.根据是奇函数,求得的值,由此化简不等式求得不等式的解集.【详解】构造函数,依题意可知,所以在上递增.由于是奇函数,所以当时,所以,所以.由得,所以,故不等式的解集为.故选:A【点睛】本小题主要考查构造函数法解不等式,考查利用导数研究函数的单调性,考查化归与转化的数学思想方法,属于中档题.8B【解析】根据正弦函数的性质可得集合A,由集合性质表示形式即可求得,进而可知满足.【详解】依题意,;而,故,则.故选:B.【点睛】本题考查了集合关系的判断与应用,集
10、合的包含关系与补集关系的应用,属于中档题.9A【解析】设点的坐标为,代入椭圆方程可得,然后分别求出点到两条渐近线的距离,由距离之积为,并结合,可得到的齐次方程,进而可求出离心率的值.【详解】设点的坐标为,有,得.双曲线的两条渐近线方程为和,则点到双曲线的两条渐近线的距离之积为,所以,则,即,故,即,所以.故选:A.【点睛】本题考查双曲线的离心率,构造的齐次方程是解决本题的关键,属于中档题.10A【解析】取,得到,取,则,计算得到答案.【详解】取,得到;取,则.故.故选:.【点睛】本题考查了二项式定理的应用,取和是解题的关键.11C【解析】设为中点,先证明平面,得出为所求角,利用勾股定理计算,得
11、出结论【详解】设分别是的中点平面 是等边三角形 又平面 为与平面所成的角是边长为的等边三角形,且为所在截面圆的圆心球的表面积为 球的半径平面 本题正确选项:【点睛】本题考查了棱锥与外接球的位置关系问题,关键是能够通过垂直关系得到直线与平面所求角,再利用球心位置来求解出线段长,属于中档题12B【解析】由已知中的程序框图可知,该程序的功能是利用循环结构计算并输出变量 的值,模拟程序的运行过程,代入四个选项进行验证即可.【详解】解:由程序框图可知,输出的数应为被3除余2,被5除余2的且大于10的最小整数.若输出 ,则不符合题意,排除;若输出,则,符合题意.故选:B.【点睛】本题考查了程序框图.当循环
12、的次数不多,或有规律时,常采用循环模拟或代入选项验证的方法进行解答.二、填空题:本题共4小题,每小题5分,共20分。135040.【解析】分两类,一类是甲乙都参加,另一类是甲乙中选一人,方法数为。填5040.【点睛】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏.在本题中,甲与乙是两个特殊元素,对于特殊元素“优先法”,所以有了分类。本题还涉及不相邻问题,采用“插空法”。14【解析】用树状图法列举出所有情况,得出甲不输的结果数,再计算即得.【详解】由题得,甲、乙两人玩一次该游戏,共有9种情况,其中甲不输有6种可能,故概率为.故答案为:【点睛】本题考查随机事件的概率,是基础题.
13、15 【解析】求出二项展开式的通项,令指数为零,求出参数的值,代入可得出展开式中的常数项;求出项的系数,利用作商法可求出系数最大的项.【详解】的展开式的通项为,令,得,所以,展开式中的常数项为;令,令,即,解得,因此,展开式中系数最大的项为.故答案为:;.【点睛】本题考查二项展开式中常数项的求解,同时也考查了系数最大项的求解,涉及展开式通项的应用,考查分析问题和解决问题的能力,属于中等题.16【解析】根据抛物线,不妨设,取 ,通过求导得, ,再根据以线段为直径的圆恰好经过,则 ,得到,两式联立,求得点N的轨迹,再求解最值.【详解】因为抛物线,不妨设,取 ,所以,即,所以 ,因为以线段为直径的圆
14、恰好经过,所以 ,所以,所以,由 ,解得,所以点在直线 上,所以当时, 最小,最小值为.故答案为:2【点睛】本题主要考查直线与抛物线的位置关系直线的交轨问题,还考查了运算求解的能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)证明见解析;(2)1【解析】(1)由菱形的性质和线面垂直的性质,可得平面,再由面面垂直的判定定理,即可得证;(2)设,分别求得,和的长,运用三棱锥的体积公式,计算可得所求值【详解】(1)四边形为菱形,平面,又,平面,又平面,平面平面;(2)设,在菱形中,由,可得,在中,可得,由面,知,为直角三角形,可得,三棱锥的体积,菱形的边长为1
15、【点睛】本题考查面面垂直的判定,注意运用线面垂直转化,考查三棱锥的体积的求法,考查化简运算能力和推理能力,意在考查学生对这些知识的理解掌握水平18(1),.(2)填表见解析;在犯错误的概率不超过0.01的情况下,不能认为“获得优秀作文”与“学生的文理科”有关(3)详见解析【解析】(1)根据频率分步直方图和构成以2为公比的等比数列,即可得解;(2)由频率分步直方图算出相应的频数即可填写列联表,再用的计算公式运算即可;(3)获奖的概率为,随机变量,再根据二项分布即可求出其分布列与期望.【详解】解:(1)由频率分布直方图可知,因为构成以2为公比的等比数列,所以,解得,所以,.故,.(2)获奖的人数为
16、人,因为参考的文科生与理科生人数之比为,所以400人中文科生的数量为,理科生的数量为.由表可知,获奖的文科生有6人,所以获奖的理科生有人,不获奖的文科生有人.于是可以得到列联表如下:文科生理科生合计获奖61420不获奖74306380合计80320400所以在犯错误的概率不超过0.01的情况下,不能认为“获得优秀作文”与“学生的文理科”有关.(3)由(2)可知,获奖的概率为,的可能取值为0,1,2,分布列如下:012数学期望为.【点睛】本题考查频率分布直方图、统计案例和离散型随机变量的分布列与期望,考查学生的阅读理解能力和计算能力,属于中档题19(1)(2)见解析,最小值为4【解析】(1)根据
17、焦点到直线的距离列方程,求得的值,由此求得抛物线的方程.(2)设出的坐标,利用导数求得切线的方程,由此判断出直线恒过抛物线焦点.求得三角形面积的表达式,进而求得面积的最小值.【详解】(1)依题意,解得 (负根舍去)抛物线的方程为(2)设点,由,即,得抛物线在点处的切线的方程为,即,点在切线上,同理,综合、得,点的坐标都满足方程.即直线恒过抛物线焦点当时,此时,可知:当,此时直线直线的斜率为,得于是,而把直线代入中消去得,即:当时,最小,且最小值为4【点睛】本小题主要考查点到直线的距离公式,考查抛物线方程的求法,考查抛物线的切线方程的求法,考查直线过定点问题,考查抛物线中三角形面积的最值的求法,
18、考查运算求解能力,属于难题.20(1);(2).【解析】(1)将代入函数的解析式,将函数的及解析式变形为分段函数,利用二次函数的基本性质可求得函数的值域;(2)由参变量分离法得出在区间内有解,分和讨论,求得函数的最大值,即可得出实数的取值范围.【详解】(1)当时,.当时,;当时,.函数的值域为;(2)不等式等价于,即在区间内有解当时,此时,则;当时,函数在区间上单调递增,当时,则.综上,实数的取值范围是.【点睛】本题主要考查含绝对值函数的值域与含绝对值不等式有解的问题,利用绝对值的应用将函数转化为二次函数,结合二次函数的性质是解决本题的关键,考查分类讨论思想的应用,属于中等题.21 (1) (2)4【解析】(1)将点P横坐标代入抛物线中求得点P的坐标,利用点P到准线的距离d和勾股定理列方程求出p的值即可;(2)设A、B点坐标以及直线AB的方程,代入抛物线方程,利用根与系数的关系,以及垂直关系,得出关系式,计算的值即可【详解】(1)将点P横坐标代入中,求得,P(2,),点P到准线的距离为,解得,抛物线C的方程为:;(2)抛物线的焦点为F(0,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 阿里地区农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)附答案详解(典型题)
- 怒江州农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)附答案详解(培优b卷)
- 湖北省农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)参考答案详解
- 2026年荆门市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)及完整答案详解一套
- 苗栗县农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)及参考答案详解一套
- 湖州市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)及答案详解(名师系列)
- 宜宾市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)附答案详解(满分必刷)
- 阿里地区农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)含答案详解(培优b卷)
- 梁平县农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)及1套完整答案详解
- 通辽市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)含答案详解(巩固)
- 2024年网络安全知识竞赛考试题库500题(含答案)
- 短视频与直播电商(全彩微课版) 教学大纲
- (完整版)硬笔行楷入门字帖
- DB510100T 235-2017 成都市域快速轨道交通工程设计规范
- GB/Z 44070-2024液压缸屈曲载荷评估方法
- 2023年小型水库雨水情测报和大坝安全监测设施项目-实施方案
- 2024《公共基础知识必刷300题》题库(a卷)
- 《西柏坡精神》班会课件
- 55项临床护理技术操作标准(49-55项)
- MOOC 创业基础-暨南大学 中国大学慕课答案
- 人工智能一体化三维重建应用于胸外科的中国专家共识
评论
0/150
提交评论