




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1Digital Logic Design and Application Lecture #6UESTC, Spring 2011Chapter 4 Combinational Logic Design PrinciplesBasic Logic Algebra学习要求掌握:逻辑代数的公理、定理,正负逻辑的概念与对偶关系、反演关系、香农展开定理,以及在逻辑代数化简时的作用;掌握:逻辑函数的表达形式:积之和与和之积标准型、真值表、卡诺图、最小逻辑表达式之间的关系;掌握:组合电路的分析:穷举法和代数法;卡诺图化简方法;掌握:组合电路的综合过程:将功能叙述表达为组合逻辑函数的表达形式、使用与非门、
2、或非门表达的逻辑函数表达式、逻辑函数的最简表达形式及综合设计的其他问题:无关项(dont-care terms)的处理。理解:逻辑函数表达式的基本化简方法函数化简方法;多输出(multiple-output)逻辑化简的方法和定时冒险(timing hazards)问题。了解:组合逻辑电路和时序逻辑电路的基本概念;逻辑代数化简时的几个概念:蕴含项(implicant)、主蕴含项(prime implicant)、奇异“ 1 ”单元(distinguished 1-cell )、质主蕴含项(essential prime implicant);五变量及以上逻辑函数卡诺图化简方法;了解:开集(on-
3、set)、闭集(off-set)的概念;23Basic ConceptsTwo types of logic circuits:combinational logic circuitsequential logic circuitOutputs depend only on its current inputs.Outputs depends not only on the current inputs but also on the past sequence of inputs.A combinational circuit dont contain feedback loops whic
4、h generally create sequential circuit behavior.4.1 Switching Algebra454.1 Switching Algebra4.1.1 Axioms (公理)A1: X = 0, if X 1X = 1, if X 0A2: 0 = 11 = 0A3: 00 = 01+1 = 1A4: 11 = 10+0 = 0A5: 01 = 10 = 01+0 = 0+1 = 1a.k.a. “Boolean algebra”数字抽象基本逻辑门的输出4.1 Switching Algebra (撇号)为逻辑非操作符;表达式Y=x, 表示信号Y与x之
5、间的逻辑关系;逻辑加操作符“+”,有些地方用“ ”“ or”表示;逻辑乘操作符“”,有些地方用“& ”“ and”表示;优先级:逻辑非逻辑乘逻辑加。6F = 0 + 1 ( 0 + 1 0 ) = 0 + 1 1= 074.1.2 Single-Variable TheoremsIdentities(自等律): X+0=XX1=XNull Elements(0-1律): X+1=1X0=0Involution(还原律): ( X ) = XIdempotency(同一律): X+X=XXX=XComplements(互补律): X+X=1XX=0The relationship between
6、 variable and constantThe relationship between variable and itself单变量定理 T1T5所有定理都可以通过完全归纳法来证明!84.1.3 Two- and Three-Variable TheoremsSimilar relationships with general algebraCommutativity (交换律) AB = BAA+B = B+AAssociativity (结合律) A(BC) = (AB)CA+(B+C) = (A+B)+CDistributivity (分配律) AB+BC=A(B+C) A+BC
7、= (A+B)(A+C)These theorems can be proved by truth table.二、三变量定理 T6T89Notices不存在变量的指数 AAA A3没有定义除法 if AB=BC A=C ? 没有定义减法 if A+B=A+C B=C ?A=1, B=0, C=0AB=AC=0, ACA=1, B=0, C=1 A+B=A+C, BC 错!错!104.1.3 Two- and Three-Variable TheoremsCovering (吸收律)X + XY = X X(X+Y) = XCombining (组合律)XY + XY = X (X+Y)(X+
8、Y) = XConsensus (添加律/一致性定理)XY + XZ + YZ = XY + XZ(X+Y)(X+Z)(Y+Z) = (X+Y)(X+Z)Some Special Relationships 对偶 二、三变量定理 T9T1111(X+Y) + (X+Y) = 1A + A = 1XY + XY = X(A+B)(A(B+C) + (A+B)(A(B+C) = (A+B)代入定理: 在含有变量 X 的逻辑等式中,如果将式中所有出现 X 的地方都用另一个表达式 F 来代替,则等式仍然成立。124.1.4 n-Variable Theorems n变量定理 T12T15General
9、ized idempotency theorem 广义同一律X + X + + X = X X X X = XShannons expansion theorem 香农展开定理F(X1, X2, , Xn)= X1 F(1,X2,Xn) + X1 F(0,X2,Xn)= X1 + F(0,X2,Xn) X1 + F(1,X2,Xn) N变量定理能够使用有限归纳法来证明!How to prove?13To prove: AD + AC + CD + ABCD = AD + AC= A ( 1D + 1C + CD + 1BCD ) + A ( 0D + 0C + CD + 0BCD )= A (
10、 D + CD + BCD ) + A ( C + CD )= AD+ AC144.1.4 n-Variable TheoremsDeMorgans Theorem 摩根定理 T13 Complement Theorem 反演定理 (A B) = A + B(A + B) = A Bn变量定理 T12T15Xi可以是任意表达式15DeMorgan SymbolsQuiz: 如何用NAND门实现NOR功能?逻辑功能的电路实现的多样性164.1.4 n-Variable Theorems n变量定理 T12T15Complement of a logic expression: , 0 1, Co
11、mplementing all VariablesKeep the previous priorityNotice the out of parenthesesExample1: Write the complement function for each of the following logic functions.F1 = A(B+C)+CDF2 = (AB)+CDEExample2: Prove that (AB + AC) = AB + ACF1 = (A+BC)(C+D)F2 = AB(C+D+E)17(A+B)(A+C) 反演定理AA +AC + AB + BC 结合律AC +
12、 AB 一致律 AC + AB + BC 互补率Example2: Prove (AB + AC) = AB + AC4.1.4 n-Variable Theorems n变量定理 T12T154.1.5 Duality (对偶性)Duality Rule , 0 1 Keep the previous priority 对任意逻辑表达式,将其中的“或”“与”操作对换,“0”“1”对换,并保持原来的逻辑优先级不变,得到新的等式仍然成立。新的等式FD称为F的对偶式。18 FD(X1 , X2 , , Xn , + , , ) = F(X1 , X2 , , Xn , , + , ) 回顾公理、定
13、理对偶的性质0D=1,1D=0;变量XD=X;对函数F,G有:(F+G)D= FDGD;(F G)D= FD+ GD(F D )D=F若F=G,则FD =GD 19Example: Write the Duality function for each of the following Logic functions. F1 = A+B(C+D)F2 = ( A(B+C) + (C+D) )F1D = A(B+CD)F2D = ( (A+BC) (CD) )4.1.5 Duality (对偶性)Counterexample: 优先级的处理 X+XY = XXX+Y = X X+Y = XX(X
14、+Y) = X204.1.5 Duality (对偶性)Principle of Duality Any logic equation remains true if the duals of it is true. 证明公式:A+BC = (A+B)(A+C)A(B+C)AB+AC214.1.5 Duality (对偶性)Write the duality and complement function for each of the following logic functions. F1 = A(B+C) + CD F2 = ( A(B+C) + (C+D) )224.1.5 Dual
15、ity (对偶性)Duality: FD(X1 , X2 , , Xn , + , , ) = F(X1 , X2 , , Xn , , + , ) The relation between the positive-logic convention and the negative-logic convention is duality.正逻辑与负逻辑之间是对偶的关系G1ABFA B FL L LL H LH L LH H Helectrical functionA B F0 0 00 1 01 0 01 1 1positive logicA B F1 1 11 0 10 1 10 0 0n
16、egative logicF = ABF = A+B对偶4.1.5 Duality (对偶性)由于正负逻辑之间的对偶关系使得:逻辑电路(circuit)有不唯一的描述(解释)形式逻辑功能(function)有不唯一的实现形式23唯一的电气特性 (H and L level)唯一的truth Table4.1.5 Duality (对偶性)采用不同的逻辑体制描述同一个数字电路(circuit)24Example:某个数字电路电气特性如下表,用正逻辑描述(解释),其逻辑表达式和逻辑电路图如下所示。请给出用负逻辑描述的表达式和电路图。Positive logicF=AB+CABFCNegative
17、logicF=(A+B)CABFC4.1.5 Duality (对偶性)25A B F0 0 00 1 01 0 01 1 1Truth TableA B FL L LL H LH L LH H HPositive logicelectrical functionF=A BABF采用不同的逻辑体制来实现同一种逻辑功能Use 3 NMOS to build the electric circuitExample:某数字电路完成的逻辑功能如真值表所示,若分别用正/负逻辑体制实现,给出其逻辑电路图和电路图。4.1.5 Duality (对偶性)采用不同的逻辑体制来实现同一种逻辑功能26Example
18、:某逻辑电路需要完成的逻辑功能如真值表所示,分别用正/负逻辑体制实现,给出其逻辑电路图和电路图。A B F0 0 00 1 01 0 01 1 1Truth TableA B FH H HH L HL H HL L LNegative logicelectrical functionF=A + BABFUse 3 PMOS to build the electric circuitF=A B4.1.5 Duality (对偶)and Complement获得任意函数的反函数的方法通过对的对偶函数求非,且对偶函数自变量为的反变量;27Complement: F(X1 , X2 , , Xn) =
19、 FD(X1 , X2, , Xn ) F(X1 , X2 , , Xn) = FD(X1 , X2, , Xn ) A B F0 0 00 1 01 0 01 1 1positive logicF = ABF = ABF = AB =F ( A,B) =(F ( A,B)ABFC4.1.5 Duality (对偶性) and Complement由于对偶关系的存在,一旦得到积之和的表达式综合出二级与-或电路,就可以很方便的得到和之积表达式并综合出二级或-与逻辑电路。28Positive logicF=AB+CABFCPositive logic=(F( A,B)And-OR circuitO
20、R- And circuit4.1.5 Duality (对偶性) and Complement29304.1.6 Logic Function and its RepresentationsSome definitionsLiteral(文字): a variable or its complement such as X, X, CS_LExpression(表达式): literals combined by AND, OR, parentheses, complementation( FREDZ + CS_LABC + Q5 )RESET Product term(乘积项): PQRS
21、um term(求和项): X+Y+ZSum-of-products expression(积之和表达式): A + BC + ABC Product-of-sums expression (和之积表达式): (B+C) (A+B+C)Equation(方程/函数): Variable = expressionP = ( FREDZ + CS_LABC + Q5)RESET 4.1.6 Logic Function and its RepresentationsSome definitions标准项(normal term):一个乘积或求和项,每个变量只出现一次;非标准项可以化为标准项。n变量
22、最小项(Miniterm):具有n个变量的标准乘积项;n变量最大项(Maxterm):具有n个变量的标准求和项;31F (A,B ) = AB+AF (A,B ) = AB+AB+AB3变量:ABC,A BC,任何非标准项都可以化为最大或最小项。3变量:A+B+C,A+ B+C,324.1.6 Logic Function and its Representations举重裁判电路Y = F (A,B,C ) = A(B+C)ABYC&1ABCYLogic Circuit开关ABC:1-闭合指示灯Y:1-亮000001110 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1
23、1 1 0 1 1 1 ABCYTruth TableLogic Equation 4.1.6 Logic Function and its Representations逻辑函数的描述方式真值表(Truth table)逻辑代数表达式(Logic Function/ Equation)逻辑电路图(Logic circuit)33分析设计34Y = A + BC + ABC0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 1ABCBCABCY110000000111111000000100Sum-of-Products expression“积之和”表达式“与-或”
24、式二级电路实现方式literalproduct term乘积项11114.1.6 Logic Function and its RepresentationsLogic Expression Truth Table逻辑函数真值表4.1.6 Logic Function and its RepresentationsLogic Expression Truth Table逻辑函数真值表35Y = (B+C) (A+B+C)0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 1ABCB+CA+B+CY001111111111111111110000sum term求和项P
25、roduct-of-Sums expression“和之积”表达式“或-与”式二级电路实现方式4.1.6 Standard Representations of Logic FunctionsTruth table logic function真值表逻辑函数36ABC1 variable0 (variable)product terms: 0 0 0 00 0 1 00 1 0 00 1 1 11 0 0 01 0 1 01 1 0 01 1 1 0ABCFTruth TableA product term that is 1 in exactly one row of the truth t
26、able真值表中使某行为1的乘积项minterm*F = ABC37Canonical Sum(标准和): a sum of mintermsOn-Set开集0 0 0 00 0 1 00 1 0 00 1 1 11 0 0 01 0 1 11 1 0 11 1 1 0ABCF00010000F1= + +00000100F200000010F3F = ABC + ABC + ABC= A,B,C(3,5,6)MintermListm0m1m2m3m4m5m6m74.1.6 Standard Representations of Logic Functions实际上是挑选取1的Miniterm
27、集合来描述逻辑函数384.1.6 Standard Representations of Logic FunctionsMinterm (最小项) An n-variable minterm is a normal product term with n literals.There are 2n such product terms.The sum of all minterms is 1.The product of any two different product-terms is 0.ABCABCABCABCABCABCABCABC0 0 00 0 10 1 00 1 11 0 01
28、 0 11 1 01 1 1ABCMinitermTruth table logic function真值表逻辑函数Truth Table394.1.6 Standard Representations of Logic Functions11101111G(ABC) = A+B+CF = ABCG = A+B+C0 0 0 00 0 1 00 1 0 00 1 1 11 0 0 01 0 1 01 1 0 01 1 1 0ABCFTruth TableA sum term that is 0 in exactly one row of the truth table真值表中使某行为0的求和项
29、maxterm *0 variable1 (variable)sum terms: 40Canonical Product (标准积) : a product of maxterms0 0 0 00 0 1 10 1 0 10 1 1 01 0 0 11 0 1 11 1 0 11 1 1 0ABCF01111111F1= 11101111F211111110F3F = (A+B+C)(A+B+C)(A+B+C)= A,B,C(0,3,7)Off-Set闭集MaxtermListM0M1M2M3M4M5M6M74.1.6 Standard Representations of Logic Fu
30、nctions实际上是挑选取0的Maxterm集合来描述逻辑函数414.1.6 Standard Representations of Logic Functions Maxterms (最大项) An n-variable maxterm is a normal sum term with n literals. There are 2n such sum terms.The product of all maxterms is 0.The sum of any two different sum-terms is 1.A+B+CA+B+CA+B+CA+B+CA+B+CA+B+CA+B+CA
31、+B+C0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 1ABCMaxtermTruth table logic function真值表逻辑函数42ABCABCABCABCABCABCABCABCmintermm0m1m2m3m4m5m6m70 0 0 00 0 1 10 1 0 20 1 1 31 0 0 41 0 1 51 1 0 61 1 1 7ABCrowA+B+CA+B+CA+B+CA+B+CA+B+CA+B+CA+B+CA+B+CM0M1M2M3M4M5M6M7maxtermProduct term:0 (variable)1 variableSum
32、term:1 (variable)0 variable Mi = mi ; mi = Mi ;Why does every logic function can be written as a canonical sum or a canonical product?为什么任何逻辑函数都可以表示为标准积或者标准和的形式?任何非标准项都可以化为最大或最小项,因此可以用最大项之积或最小项之和来表示任意逻辑函数。逻辑函数的互斥二值取值;取1的Miniterm之和描述了逻辑函数取1的所有情况;取0的Maxterm之积描述了逻辑函数取0的情况;采取哪种描述形式视简便而定。4.1.6 Standard Representations of Logic FunctionsAny logic function can be written as a canonical sum.44Example: Write the canonical sum for the following function: F(A,B,C) = AB +ACUsing theorem: X + X = 1F(A,B,C) = AB + AC = AB(C+C) + AC(B+B) = ABC + ABC + ABC + ABC1 1 11 1 00 1 10 0 1= A,B,C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 旅游景点建设脚手架监测措施
- 科技公司财务工作总结及创新计划
- 小学一年级第一学期家长沟通计划
- 教师职业素养提升年度计划
- 2025年仓库成本控制方案及总结
- 复学后课程考核方式改革计划
- 二年级学生身体素质提升计划
- 医疗设备采购项目进度管理措施
- 学校应急疏散演练计划
- 2024-2025学年山东省淄博市周村区八年级上学期期中考试地理试卷
- 《离散数学》题库答案
- 口腔种植手术协议书
- 小学英语-国际音标-练习及答案
- 2025-2030年国有银行行业市场深度分析及竞争格局与投资发展研究报告
- 2025年建筑模板制品行业深度研究报告
- 挂名股东签署协议书
- 2025国家开放大学《员工劳动关系管理》形考任务1234答案
- 湖北省荆门市2025年七年级下学期语文期末考试试卷及答案
- 环境监测中的化学分析技术试题及答案
- 2024-2025湘科版小学科学四年级下册期末考试卷及答案(三套)
- 下肢深静脉血栓的预防和护理新进展
评论
0/150
提交评论