内蒙古自治区乌海市乌达区2021-2022学年高考冲刺模拟数学试题含解析_第1页
内蒙古自治区乌海市乌达区2021-2022学年高考冲刺模拟数学试题含解析_第2页
内蒙古自治区乌海市乌达区2021-2022学年高考冲刺模拟数学试题含解析_第3页
内蒙古自治区乌海市乌达区2021-2022学年高考冲刺模拟数学试题含解析_第4页
内蒙古自治区乌海市乌达区2021-2022学年高考冲刺模拟数学试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知直三棱柱中,则异面直线与所成的角的正弦值为( )ABCD2已知集合,则集合( )ABCD3若复数(是虚数单位),则复数在复平面内对应的点位于( )A第一象限B第二象限C第三象限D第四象限4已知双曲线与双曲线有相同的渐近线,则双曲线的

2、离心率为()ABCD5已知四棱锥,底面ABCD是边长为1的正方形,平面平面ABCD,当点C到平面ABE的距离最大时,该四棱锥的体积为( )ABCD16用电脑每次可以从区间内自动生成一个实数,且每次生成每个实数都是等可能性的.若用该电脑连续生成3个实数,则这3个实数都小于的概率为( )ABCD7已知抛物线上一点的纵坐标为4,则点到抛物线焦点的距离为( )A2B3C4D58是恒成立的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件9设、分别是定义在上的奇函数和偶函数,且,则( )AB0C1D310设数列是等差数列,.则这个数列的前7项和等于( )A12B21C24D3611阅

3、读下侧程序框图,为使输出的数据为31,则处应填的数字为A4B5C6D712已知满足,则的取值范围为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13如图所示,在边长为4的正方形纸片中,与相交于.剪去,将剩余部分沿,折叠,使、重合,则以、为顶点的四面体的外接球的体积为_.14如图所示梯子结构的点数依次构成数列,则_.15将函数的图象向左平移个单位长度,得到一个偶函数图象,则_16设数列的前项和为,且对任意正整数,都有,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)讨论的单调性;(2)若恒成立,求实数的取值范围.18(12分)如图,

4、在三棱锥中,侧面为等边三角形,侧棱.(1)求证:平面平面;(2)求三棱锥外接球的体积.19(12分)已知函数.若在定义域内存在,使得成立,则称为函数的局部对称点.(1)若a,且a0,证明:函数有局部对称点;(2)若函数在定义域内有局部对称点,求实数c的取值范围;(3)若函数在R上有局部对称点,求实数m的取值范围.20(12分)如图,在直三棱柱中,为的中点,点在线段上,且平面(1)求证:;(2)求平面与平面所成二面角的正弦值21(12分)在平面直角坐标系中,将曲线(为参数)通过伸缩变换,得到曲线,设直线(为参数)与曲线相交于不同两点,.(1)若,求线段的中点的坐标;(2)设点,若,求直线的斜率.

5、22(10分)已知,(其中).(1)求;(2)求证:当时,参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】设M,N,P分别为和的中点,得出的夹角为MN和NP夹角或其补角,根据中位线定理,结合余弦定理求出和的余弦值再求其正弦值即可.【详解】根据题意画出图形:设M,N,P分别为和的中点,则的夹角为MN和NP夹角或其补角可知,.作BC中点Q,则为直角三角形;中,由余弦定理得,在中,在中,由余弦定理得所以故选:C【点睛】此题考查异面直线夹角,关键点通过平移将异面直线夹角转化为同一平面内的夹角,属于较易题目.2D【解析】弄清集合B

6、的含义,它的元素x来自于集合A,且也是集合A的元素.【详解】因,所以,故,又, ,则,故集合.故选:D.【点睛】本题考查集合的定义,涉及到解绝对值不等式,是一道基础题.3A【解析】将 整理成的形式,得到复数所对应的的点,从而可选出所在象限.【详解】解:,所以所对应的点为在第一象限.故选:A.【点睛】本题考查了复数的乘法运算,考查了复数对应的坐标.易错点是误把 当成进行计算.4C【解析】由双曲线与双曲线有相同的渐近线,列出方程求出的值,即可求解双曲线的离心率,得到答案【详解】由双曲线与双曲线有相同的渐近线,可得,解得,此时双曲线,则曲线的离心率为,故选C【点睛】本题主要考查了双曲线的标准方程及其

7、简单的几何性质的应用,其中解答中熟记双曲线的几何性质,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题5B【解析】过点E作,垂足为H,过H作,垂足为F,连接EF.因为平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离.设,将表示成关于的函数,再求函数的最值,即可得答案.【详解】过点E作,垂足为H,过H作,垂足为F,连接EF.因为平面平面ABCD,所以平面ABCD,所以.因为底面ABCD是边长为1的正方形,所以.因为平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离.易证平面平面ABE,所以点H到平面ABE的距离,即为H到EF的距离.不妨设,则,.因为,所以

8、,所以,当时,等号成立.此时EH与ED重合,所以,.故选:B.【点睛】本题考查空间中点到面的距离的最值,考查函数与方程思想、转化与化归思想,考查空间想象能力和运算求解能力,求解时注意辅助线及面面垂直的应用.6C【解析】由几何概型的概率计算,知每次生成一个实数小于1的概率为,结合独立事件发生的概率计算即可.【详解】每次生成一个实数小于1的概率为.这3个实数都小于1的概率为.故选:C.【点睛】本题考查独立事件同时发生的概率,考查学生基本的计算能力,是一道容易题.7D【解析】试题分析:抛物线焦点在轴上,开口向上,所以焦点坐标为,准线方程为,因为点A的纵坐标为4,所以点A到抛物线准线的距离为,因为抛物

9、线上的点到焦点的距离等于到准线的距离,所以点A与抛物线焦点的距离为5.考点:本小题主要考查应用抛物线定义和抛物线上点的性质抛物线上的点到焦点的距离,考查学生的运算求解能力.点评:抛物线上的点到焦点的距离等于到准线的距离,这条性质在解题时经常用到,可以简化运算.8A【解析】设 成立;反之,满足 ,但,故选A.9C【解析】先根据奇偶性,求出的解析式,令,即可求出。【详解】因为、分别是定义在上的奇函数和偶函数,用替换,得 ,化简得,即令,所以,故选C。【点睛】本题主要考查函数性质奇偶性的应用。10B【解析】根据等差数列的性质可得,由等差数列求和公式可得结果.【详解】因为数列是等差数列,所以,即,又,

10、所以,故故选:B【点睛】本题主要考查了等差数列的通项公式,性质,等差数列的和,属于中档题.11B【解析】考点:程序框图分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环求S的值,我们用表格列出程序运行过程中各变量的值的变化情况,不难给出答案解:程序在运行过程中各变量的值如下表示: S i 是否继续循环循环前 1 1/第一圈3 2 是第二圈7 3 是第三圈15 4 是第四圈31 5 否故最后当i5时退出,故选B12C【解析】设,则的几何意义为点到点的斜率,利用数形结合即可得到结论.【详解】解:设,则的几何意义为点到点的斜率,作出不等式组对应的平面区域如图:

11、由图可知当过点的直线平行于轴时,此时成立;取所有负值都成立;当过点时,取正值中的最小值,此时;故的取值范围为;故选:C.【点睛】本题考查简单线性规划的非线性目标函数函数问题,解题时作出可行域,利用目标函数的几何意义求解是解题关键对于直线斜率要注意斜率不存在的直线是否存在二、填空题:本题共4小题,每小题5分,共20分。13【解析】将三棱锥置入正方体中,利用正方体体对角线为三棱锥外接球的直径即可得到答案.【详解】由已知,将三棱锥置入正方体中,如图所示,故正方体体对角线长为,所以外接球半径为,其体积为.故答案为:.【点睛】本题考查三棱锥外接球的体积问题,一般在处理特殊几何体的外接球问题时,要考虑是否

12、能将其置入正(长)方体中,是一道中档题.14【解析】根据图像归纳,根据等差数列求和公式得到答案.【详解】根据图像:,故,故.故答案为:.【点睛】本题考查了等差数列的应用,意在考查学生的计算能力和应用能力.15【解析】根据平移后关于轴对称可知关于对称,进而利用特殊值构造方程,从而求得结果.【详解】向左平移个单位长度后得到偶函数图象,即关于轴对称关于对称 即: 本题正确结果:【点睛】本题考查根据三角函数的对称轴求解参数值的问题,关键是能够通过平移后的对称轴得到原函数的对称轴,进而利用特殊值的方式来进行求解.16【解析】利用行列式定义,得到与的关系,赋值,即可求出结果。【详解】由,令,得,解得。【点

13、睛】本题主要考查行列式定义的应用。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)当时,在上单调递增;当时,在上单调递减,在上单调递增;当时,在上单调递减,在上单调递增;(2).【解析】(1)对a分三种情况讨论求出函数的单调性;(2)对a分三种情况,先求出每一种情况下函数f(x)的最小值,再解不等式得解.【详解】(1),当时,在上单调递增;当时,在上单调递减,在上单调递增;当时,在上单调递减,在上单调递增.综上:当时,在上单调递增;当时,在上单调递减,在上单调递增;当时,在上单调递减,在上单调递增.(2)由(1)可知:当时,成立.当时,.当时,即.综上.【点睛】本题主要

14、考查利用导数研究函数的单调性和不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.18(1)见解析;(2).【解析】(1)设中点为,连接、,利用等腰三角形三线合一的性质得出,利用勾股定理得出,由线面垂直的判定定理可证得平面,再利用面面垂直的判定定理可得出平面平面;(2)先确定三棱锥的外接球球心的位置,利用三角形相似求出外接球的半径,再由球体的体积公式可求得结果.【详解】(1)设中点为,连接、, 因为,所以.又,所以,又由已知,则,所以,.又为正三角形,且,所以,因为,所以,平面,又平面,平面平面;(2)由于是底面直角三角形的斜边的中点,所以点是的外心,由(1)知平面,所以三

15、棱锥的外接球的球心在上.在中,的垂直平分线与的交点即为球心,记的中点为点,则.由与相似可得,所以.所以三棱锥外接球的体积为.【点睛】本题考查面面垂直的证明,同时也考查了三棱锥外接球体积的计算,找出外接球球心的位置是解答的关键,考查推理能力与计算能力,属于中等题.19(1)见解析(2)(3)【解析】(1)若函数有局部对称点,则,即有解,即可求证;(2)由题可得在内有解,即方程在区间上有解,则,设,利用导函数求得的范围,即可求得的范围;(3)由题可得在上有解,即在上有解,设,则可变形为方程在区间内有解,进而求解即可.【详解】(1)证明:由得,代入得,则得到关于x的方程,由于且,所以,所以函数必有局

16、部对称点(2)解:由题,因为函数在定义域内有局部对称点所以在内有解,即方程在区间上有解,所以,设,则,所以令,则,当时,故函数在区间上单调递减,当时,故函数在区间上单调递增,所以,因为,所以,所以,所以(3)解:由题,由于,所以,所以(*)在R上有解,令,则,所以方程(*)变为在区间内有解,需满足条件:,即,得【点睛】本题考查函数的局部对称点的理解,利用导函数研究函数的最值问题,考查转化思想与运算能力.20见解析【解析】(1)如图,连接,交于点,连接,则为的中点,因为为的中点,所以,又,所以,从而,四点共面因为平面,平面,平面平面,所以又,所以四边形为平行四边形,所以,所以(2)因为,为的中点,所以,又三棱柱是直三棱柱,所以,互相垂直,分别以,的方向为轴、轴、轴的正方向,建立如图所示的空间直角坐标系,因为,所以,所以,设平面的法向量为,则,即,令,可得,所以平面的一个法向量为设平面的法向量为,则,即,令,可得,所以平面的一个法向量为,所以,所以平面与平面所成二面角的正弦值为21(1);(2).【解析】(1)由l参数方程与椭圆方程联立可得A、B两点参数和,再利用M点的参数为A、B两点参数和的一半即可求M的坐标;(2)利用直线参数方程的几何意义得到,再利用计算即可,但要注意

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论