通信原理英文版课件:Ch1 Random Processes part1_第1页
通信原理英文版课件:Ch1 Random Processes part1_第2页
通信原理英文版课件:Ch1 Random Processes part1_第3页
通信原理英文版课件:Ch1 Random Processes part1_第4页
通信原理英文版课件:Ch1 Random Processes part1_第5页
已阅读5页,还剩38页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1Communication Systems (Fourth Edition) 2Review of Chapter 0The communication systemSource of informationSpeech, music, pictures, and computer dataTransmitter (digital)Source encoder, channel encoder, modulatorCommunication channelsWireline channels: twisted pair, coaxial cable, and optical fiberWir

2、eless channels: broadcast, mobile radio, and satelliteReceiver (digital)Demodulator, channel decoder, source decoderUser of information3Review of Chapter 0 (Contd)Communication networksThe OSI modelThe InternetB-ISDN and ATMModulationContinuous wave modulationAM, FM, and PMPulse modulationPAM, PDM,

3、and PPMPCMShannons information capacity theory4Review of Chapter 0 (Contd)Some basic conceptsPower limited and bandwidth limitedNoise, Signal-to-Noise Ratio (SNR) and Additive White Gaussian Noise (AWGN) channelCircuit switching and packet switchingSource coding and channel codingBroadcasting and po

4、int-to-point communicationAnalog and digital types of communicationChannel capacityBit Error Rate (BER)Quality of Service (QoS)5CH1:Random ProcessesIntroductionMathematical Definition of a Random ProcessStationary ProcessesMean, Correlation, and Covariance FunctionsErgodic ProcessesTransmission of a

5、 Random Process Through a Linear Time-Invariant FilterPower Spectral DensityGaussian ProcessNoiseNarrowband NoiseRepresentation of Narrowband Noise in Terms of In-phase and Quadrature ComponentsRepresentation of Narrowband Noise in Terms of Envelope and Phase ComponentsSine Wave Plus Narrowband Nois

6、eComputer Experiments: Flat-Fading ChannelSummary and Discussion61.1 IntroductionTwo mathematical modelsDeterministicStochastic (or random)Received signal in a communication system usually consists of:Information-bearing signalRandom interferenceChannel noise Describing the signal using statistical

7、parametersAverage power, power spectral density, 7Random (stochastic) processPropertiesFunction of timeRandomDefinitionEnsemble of time functionsA probability rule1.2 Mathematical Definition of a Random Process81.2 Mathematical Definition of a Random Process (Contd)Figure 1.1 An ensemble of sample f

8、unctions.Some concepts:Sample space SRandom process X(t,S) = X(t)Sample point sjRealization (sample function)xj(t) = X(t, sj)Random variable91.3 Stationary ProcessThe joint distribution function:Strictly stationary: For all time shifts , all k, and all possible choices of observation times t1, , tk,

9、 equation(1) is always true.Two special cases (wide-sense stationary):101.3 Stationary ProcessFigure 1.2 Illustrating the probability of a joint event.11Example 1.1 Three spatial windows located at times t1, t2, and t3, the probability of the joint event: In terms of the joint distribution function,

10、 this probability equals:1.3 Stationary Process121.3 Stationary ProcessFigure 1.3 Illustrating the concept of stationary in Example 1.1.131.4 Mean, Correlation, and Covariance FunctionsMean:Autocorrelation function:Autocovariance function:(Stationary)Cross-correlation function:141.4 Mean, Correlatio

11、n, and Covariance Functions (Contd)The mean and autocorrelation function provide a partial description of a random process.Wide-sense stationaryMean is a constant and autocorrelation function depends only on time difference.Often used in practiceNot necessary strictly stationary, and vise verse.15Pr

12、operties of the Autocorrelation FunctionProperties:Defining autocorrelation function of a stationary process X(t) as:16Properties of the Autocorrelation Function (Contd)Figure 1.4 Illustrating the autocorrelation functions of slowly and rapidly fluctuating random processes.17Example 1.2 Sinusoidal W

13、ave with Random PhaseA and fc are constants, and18Example 1.2 (Contd)The autocorrelation function of X(t) is:19Example 1.2 (Contd) Figure 1.5 Autocorrelation function of a sine wave with random phase.20Example 1.3 Random Binary Wave 21Cross-Correlation FunctionsTwo random processes X(t) and Y(t) wit

14、h autocorrelation functions RX(t,u) and RY(t,u), the two cross-correlation functions of X(t) and Y(t) are defined by:The correlation matrix:A symmetry relationship:22Example 1.4 Quadrature-Modulated Processes 23Example 1.4 (Contd) 241.5 Ergodic ProcessesUsing time averages to approximate ensemble av

15、erages.Considering a sample function x(t) of a stationary process X(t) in an observation window T t T:(The DC value)Time average X(T) represents an unbiased estimate of the ensemble-averaged mean X.251.5 Ergodic Processes (Contd)A process X(t) is ergodic in the mean if two conditions are satisfied:A

16、 process X(t) is ergodic in the autocorrelation function if two conditions are satisfied:For a random process to be ergodic, it has to be stationary; but a stationary random process is not necessarily ergodic.261.6 Transmission of a Random Process Through a Linear Time-Invariant FilterFigure 1.8 tra

17、nsmission of a random process through a linear time-invariant filter.271.6 Transmission Through a Linear Time-Invariant Filter (Contd)281.7 Power Spectral Density (PSD)29Definition of PSDThe power spectral density (or power spectrum) is the Fourier transform of the autocorrelation function.As a resu

18、lt,IfThenand f is small,30Properties of PSDThe PSD and the autocorrelation function form a Fourier-transform pair.The Einstein-Wiener-Khintchine Relations31Properties of PSD (Contd)is a probability density function.32PSD Example 1Sinusoidal wave with random phase33PSD Example 1 (Contd)Figure 1.10 Power spectral density of sine wave with random phase.34PSD Example 2Random binary wave35PSD Example 2 (Contd)Figure 1.11 Power spectral density of random binary wave.36PSDs of Input/O

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论