




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目
2、要求的。1已知函数,且的图象经过第一、二、四象限,则,的大小关系为( )ABCD2已知向量,(其中为实数),则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件3若复数()是纯虚数,则复数在复平面内对应的点位于( )A第一象限B第二象限C第三象限D第四象限4已知向量,且与的夹角为,则( )AB1C或1D或95某几何体的三视图如图所示,若侧视图和俯视图均是边长为的等边三角形,则该几何体的体积为ABCD6如果,那么下列不等式成立的是( )ABCD7一个算法的程序框图如图所示,若该程序输出的结果是,则判断框中应填入的条件是( )ABCD8已知抛物线的焦点与双曲线的一个
3、焦点重合,且抛物线的准线被双曲线截得的线段长为,那么该双曲线的离心率为( )ABCD9圆柱被一平面截去一部分所得几何体的三视图如图所示,则该几何体的体积为( ) ABCD10已知椭圆的左、右焦点分别为,上顶点为点,延长交椭圆于点,若为等腰三角形,则椭圆的离心率ABCD11甲、乙、丙、丁四人通过抓阄的方式选出一人周末值班(抓到“值”字的人值班).抓完阄后,甲说:“我没抓到.”乙说:“丙抓到了.”丙说:“丁抓到了”丁说:“我没抓到.已知他们四人中只有一人说了真话,根据他们的说法,可以断定值班的人是( )A甲B乙C丙D丁12已知命题,则是( )A,B,.C,D,.二、填空题:本题共4小题,每小题5分
4、,共20分。13已知以x2y =0为渐近线的双曲线经过点,则该双曲线的标准方程为_.14已知曲线,点,在曲线上,且以为直径的圆的方程是则_15展开式中项系数为160,则的值为_.16若,则的最小值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某精密仪器生产车间每天生产个零件,质检员小张每天都会随机地从中抽取50个零件进行检查是否合格,若较多零件不合格,则需对其余所有零件进行检查根据多年的生产数据和经验,这些零件的长度服从正态分布(单位:微米),且相互独立若零件的长度满足,则认为该零件是合格的,否则该零件不合格(1)假设某一天小张抽查出不合格的零件数为,求及的
5、数学期望;(2)小张某天恰好从50个零件中检查出2个不合格的零件,若以此频率作为当天生产零件的不合格率已知检查一个零件的成本为10元,而每个不合格零件流入市场带来的损失为260元假设充分大,为了使损失尽量小,小张是否需要检查其余所有零件,试说明理由附:若随机变量服从正态分布,则18(12分)新高考,取消文理科,实行“”,成绩由语文、数学、外语统一高考成绩和自主选考的3门普通高中学业水平考试等级性考试科目成绩构成.为了解各年龄层对新高考的了解情况,随机调查50人(把年龄在称为中青年,年龄在称为中老年),并把调查结果制成下表:年龄(岁)频数515101055了解4126521(1)分别估计中青年和
6、中老年对新高考了解的概率;(2)请根据上表完成下面列联表,是否有95%的把握判断对新高考的了解与年龄(中青年、中老年)有关?了解新高考不了解新高考总计中青年中老年总计附:.0.0500.0100.0013.8416.63510.828(3)若从年龄在的被调查者中随机选取3人进行调查,记选中的3人中了解新高考的人数为,求的分布列以及.19(12分)如图,在多面体中,四边形是菱形,平面,是的中点.()求证:平面平面;()求直线与平面所成的角的正弦值.20(12分)已知函数.(1)当时,求函数的值域.(2)设函数,若,且的最小值为,求实数的取值范围.21(12分)已知函数,函数,其中,是的一个极值点
7、,且.(1)讨论的单调性(2)求实数和a的值(3)证明22(10分)在极坐标系中,已知曲线C的方程为(),直线l的方程为.设直线l与曲线C相交于A,B两点,且,求r的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】根据题意,得,则为减函数,从而得出函数的单调性,可比较和,而,比较,即可比较.【详解】因为,且的图象经过第一、二、四象限,所以,所以函数为减函数,函数在上单调递减,在上单调递增,又因为,所以,又,则|,即,所以.故选:C.【点睛】本题考查利用函数的单调性比较大小,还考查化简能力和转化思想.2A【解析】结合向
8、量垂直的坐标表示,将两个条件相互推导,根据能否推导的情况判断出充分、必要条件.【详解】由,则,所以;而当,则,解得或.所以“”是“”的充分不必要条件.故选:A【点睛】本小题考查平面向量的运算,向量垂直,充要条件等基础知识;考查运算求解能力,推理论证能力,应用意识.3B【解析】化简复数,由它是纯虚数,求得,从而确定对应的点的坐标【详解】是纯虚数,则,对应点为,在第二象限故选:B【点睛】本题考查复数的除法运算,考查复数的概念与几何意义本题属于基础题4C【解析】由题意利用两个向量的数量积的定义和公式,求的值.【详解】解:由题意可得,求得,或,故选:C.【点睛】本题主要考查两个向量的数量积的定义和公式
9、,属于基础题5C【解析】由三视图可知,该几何体是三棱锥,底面是边长为的等边三角形,三棱锥的高为,所以该几何体的体积,故选C6D【解析】利用函数的单调性、不等式的基本性质即可得出.【详解】,.故选:D.【点睛】本小题主要考查利用函数的单调性比较大小,考查不等式的性质,属于基础题.7D【解析】首先判断循环结构类型,得到判断框内的语句性质,然后对循环体进行分析,找出循环规律,判断输出结果与循环次数以及的关系,最终得出选项【详解】经判断此循环为“直到型”结构,判断框为跳出循环的语句,第一次循环:;第二次循环:;第三次循环:,此时退出循环,根据判断框内为跳出循环的语句,故选D【点睛】题主要考查程序框图的
10、循环结构流程图,属于中档题 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可8A【解析】由抛物线的焦点得双曲线的焦点,求出,由抛物线准线方程被曲线截得的线段长为,由焦半径公式,联立求解.【详解】解:由抛物线,可得,则,故其准线方程为,抛物线的准线过双曲线的左焦点,抛物线的准线被双曲线截得的线段长为,又
11、,则双曲线的离心率为故选:【点睛】本题考查抛物线的性质及利用过双曲线的焦点的弦长求离心率. 弦过焦点时,可结合焦半径公式求解弦长9B【解析】三视图对应的几何体为如图所示的几何体,利用割补法可求其体积.【详解】根据三视图可得原几何体如图所示,它是一个圆柱截去上面一块几何体,把该几何体补成如下图所示的圆柱,其体积为,故原几何体的体积为. 故选:B.【点睛】本题考查三视图以及不规则几何体的体积,复原几何体时注意三视图中的点线关系与几何体中的点、线、面的对应关系,另外,不规则几何体的体积可用割补法来求其体积,本题属于基础题.10B【解析】设,则,因为,所以若,则,所以,所以,不符合题意,所以,则,所以
12、,所以,设,则,在中,易得,所以,解得(负值舍去),所以椭圆的离心率故选B11A【解析】可采用假设法进行讨论推理,即可得到结论.【详解】由题意,假设甲:我没有抓到是真的,乙:丙抓到了,则丙:丁抓到了是假的,丁:我没有抓到就是真的,与他们四人中只有一个人抓到是矛盾的;假设甲:我没有抓到是假的,那么丁:我没有抓到就是真的,乙:丙抓到了,丙:丁抓到了是假的,成立,所以可以断定值班人是甲.故选:A.【点睛】本题主要考查了合情推理及其应用,其中解答中合理采用假设法进行讨论推理是解答的关键,着重考查了推理与分析判断能力,属于基础题.12B【解析】根据全称命题的否定为特称命题,得到结果.【详解】根据全称命题
13、的否定为特称命题,可得,本题正确选项:【点睛】本题考查含量词的命题的否定,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】设双曲线方程为,代入点,计算得到答案.【详解】双曲线渐近线为,则设双曲线方程为:,代入点,则.故双曲线方程为:.故答案为:.【点睛】本题考查了根据渐近线求双曲线,设双曲线方程为是解题的关键.14【解析】设所在直线方程为设点坐标分别为,都在上,代入曲线方程,两式作差可得,从而可得直线的斜率,联立直线与的方程,由,利用弦长公式即可求解.【详解】因为是圆的直径,必过圆心点,设所在直线方程为设点坐标分别为,都在上,故两式相减,可得(因为是的中点),即联立直线
14、与的方程:又,即,即又因为,则有即.故答案为:【点睛】本题考查了直线与圆锥曲线的位置关系、弦长公式,考查了学生的计算能力,综合性比较强,属于中档题.15-2【解析】表示该二项式的展开式的第r+1项,令其指数为3,再代回原表达式构建方程求得答案.【详解】该二项式的展开式的第r+1项为令,所以,则故答案为:【点睛】本题考查由二项式指定项的系数求参数,属于简单题.16【解析】由基本不等式,可得到,然后利用,可得到最小值,要注意等号取得的条件。【详解】由题意,当且仅当时等号成立,所以,当且仅当时取等号,所以当时,取得最小值【点睛】利用基本不等式求最值必须具备三个条件:各项都是正数;和(或积)为定值;等
15、号取得的条件。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)见解析(2)需要,见解析【解析】(1)由零件的长度服从正态分布且相互独立,零件的长度满足即为合格,则每一个零件的长度合格的概率为,满足二项分布,利用补集的思想求得,再根据公式求得;(2)由题可得不合格率为,检查的成本为,求出不检查时损失的期望,与成本作差,再与0比较大小即可判断.【详解】(1),由于满足二项分布,故.(2)由题意可知不合格率为,若不检查,损失的期望为;若检查,成本为,由于,当充分大时,所以为了使损失尽量小,小张需要检查其余所有零件.【点睛】本题考查正态分布的应用,考查二项分布的期望,考查补集思
16、想的应用,考查分析能力与数据处理能力.18(1);(2)见解析,有95%的把握判断了解新高考与年龄(中青年、中老年)有关联;(3)分布列见解析,.【解析】(1)分别求出中青年、中老年对高考了解的频数,即可求出概率;(2)根据数据列出列联表,求出的观测值,对照表格,即可得出结论;(3)年龄在的被调查者共5人,其中了解新高考的有2人,可能取值为0,1,2,分别求出概率,列出随机变量分布列,根据期望公式即可求解.【详解】(1)由题中数据可知,中青年对新高考了解的概率,中老年对新高考了解的概率.(2)列联表如图所示了解新高考不了解新高考总计中青年22830老年81220总计302050,所以有95%的
17、把握判断了解新高考与年龄(中青年、中老年)有关联.(3)年龄在的被调查者共5人,其中了解新高考的有2人,则抽取的3人中了解新高考的人数可能取值为0,1,2,则;.所以的分布列为012.【点睛】本题考查概率、独立性检验及随机变量分布列和期望,考查计算求解能力,属于基础题.19 ()详见解析;()【解析】试题分析:()连接交于,得,所以面,又 ,得面,即可利用面面平行的判定定理,证得结论;()如图,以O为坐标原点,建立空间直角坐标系,求的平面的一个法向量 ,利用向量和向量夹角公式,即可求解与平面所成角的正弦值试题解析:()连接BD交AC于O,易知O是BD的中点,故OG/BE,BE面BEF,OG在面
18、BEF外,所以OG/面BEF;又EF/AC,AC在面BEF外,AC/面BEF,又AC与OG相交于点O,面ACG有两条相交直线与面BEF平行,故面ACG面BEF;()如图,以O为坐标原点,分别以OC、OD、OF为x、y、z轴建立空间直角坐标系,则, , , ,设面ABF的法向量为,依题意有,令,直线AD与面ABF成的角的正弦值是 20(1);(2).【解析】(1)令,求出的范围,再由指数函数的单调性,即可求出结论;(2)对分类讨论,分别求出以及的最小值或范围,与的最小值建立方程关系,求出的值,进而求出的取值关系.【详解】(1)当时, 令,而是增函数,函数的值域是.(2)当时,则在上单调递减,在上单调递增,所以的最小值为,在上单调递增,最小值为,而的最小值为,所以这种情况不可能.当时,则在上单调递减且没有最小值,在上单调递增最小值为,所以的最小值为,解得(满足题意),所以,解得.所以实数的取值范围是.【点睛】本题考查复合函数的值域与分段函数的最值,熟练掌握二次函数图像和性质是解题的关键,属于中档题.21(1)在区间单调递增;(2);(3)证明见解析.【解析】(1)求出,在定义域内,再次求导,可得在区间上恒成立,从而可得结论;(2)由,可得,由可得,联立解方程组可得结果;(3)由(1)知在区间单
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025教育机构与科技班合作合同
- 2025合同调整申请书
- 一年级:成长之旅
- 2025按摩院劳务合同模板
- 2025买卖茶叶合同模板
- 2025短期劳动合同模板示例
- 《循环水系统》课件
- 厳格な教育の日本語表現と教育応用
- 《数据保护与恢复策略》课件
- 防雷防汛安全教育
- 健合集团在线测评原题
- 公路工程标准施工招标文件(2018年版)
- 个人理财-形考作业4(第8-9章)-国开(ZJ)-参考资料
- DL∕T 1654-2016 磷酸酯抗燃油氧化安定性和腐蚀性试验方法
- AQ/T 2059-2016 磷石膏库安全技术规程(正式版)
- 青岛超银中学2022-2023学年七年级下学期阶段性调研地理试题【带答案】
- 2024年安徽省初中(八年级)学业水平考试初二会考生物+地理试卷真题
- 4000m3d制药废水计算书
- 越剧古装衣介绍
- 人事行政工作成功典范总结
- 英国皇室文化课件
评论
0/150
提交评论