版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合,且、都是全集(为实数集)的子集,则如图所示韦恩图中阴影部分所表示的集合为( )AB或CD2甲乙两人有三个不同的学习小组, , 可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为( )A B C D3
2、已知展开式中第三项的二项式系数与第四项的二项式系数相等,若,则的值为( )A1B1C8lD814使得的展开式中含有常数项的最小的n为( )ABCD5已知是双曲线的左右焦点,过的直线与双曲线的两支分别交于两点(A在右支,B在左支)若为等边三角形,则双曲线的离心率为( )ABCD6函数,则“的图象关于轴对称”是“是奇函数”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件7关于的不等式的解集是,则关于的不等式的解集是( )ABCD8某工厂利用随机数表示对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,599,600.从中抽取60个样本,下图
3、提供随机数表的第4行到第6行:若从表中第6行第6列开始向右读取数据,则得到的第6个样本编号是( )A324B522C535D5789已知我市某居民小区户主人数和户主对户型结构的满意率分别如图和如图所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为A240,18B200,20C240,20D200,1810抛物线C:y2=2px的焦点F是双曲线C2:x2m-y21-m=10m1,n22n,则p为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知,那么_.14已知,圆,直线PM,PN分别与圆O相切,切点
4、为M,N,若,则的最小值为_.15设是公差不为0的等差数列的前项和,且,则_.16设O为坐标原点, ,若点B(x,y)满足,则的最大值是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)己知,函数.(1)若,解不等式;(2)若函数,且存在使得成立,求实数的取值范围.18(12分)记为数列的前项和,N.(1)求;(2)令,证明数列是等比数列,并求其前项和.19(12分)已知动圆过定点,且与直线相切,动圆圆心的轨迹为,过作斜率为的直线与交于两点,过分别作的切线,两切线的交点为,直线与交于两点(1)证明:点始终在直线上且;(2)求四边形的面积的最小值20(12分)如图所示
5、,在四棱锥中,底面是棱长为2的正方形,侧面为正三角形,且面面,分别为棱的中点 (1)求证:平面; (2)求二面角的正切值21(12分)如图,两座建筑物AB,CD的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是10m和20m,从建筑物AB的顶部A看建筑物CD的视角CAD60(1)求BC的长度;(2)在线段BC上取一点P(点P与点B,C不重合),从点P看这两座建筑物的视角分别为APB,DPC,问点P在何处时,+最小?22(10分)已知椭圆的上顶点为,圆与轴的正半轴交于点,与有且仅有两个交点且都在轴上,(为坐标原点).(1)求椭圆的方程;(2)已知点,不过点且斜率为的直线与椭圆交于两点,
6、证明:直线与直线的斜率互为相反数.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】根据韦恩图可确定所表示集合为,根据一元二次不等式解法和定义域的求法可求得集合,根据补集和交集定义可求得结果.【详解】由韦恩图可知:阴影部分表示,.故选:.【点睛】本题考查集合运算中的补集和交集运算,涉及到一元二次不等式和函数定义域的求解;关键是能够根据韦恩图确定所求集合.2A【解析】依题意,基本事件的总数有种,两个人参加同一个小组,方法数有种,故概率为.3B【解析】根据二项式系数的性质,可求得,再通过赋值求得以及结果即可.【详解】因为展开式
7、中第三项的二项式系数与第四项的二项式系数相等,故可得,令,故可得,又因为,令,则,解得令,则.故选:B.【点睛】本题考查二项式系数的性质,以及通过赋值法求系数之和,属综合基础题.4B【解析】二项式展开式的通项公式为,若展开式中有常数项,则,解得,当r取2时,n的最小值为5,故选B【考点定位】本题考查二项式定理的应用5D【解析】根据双曲线的定义可得的边长为,然后在中应用余弦定理得的等式,从而求得离心率【详解】由题意,又,在中,即,故选:D【点睛】本题考查求双曲线的离心率,解题关键是应用双曲线的定义把到两焦点距离用表示,然后用余弦定理建立关系式6B【解析】根据函数奇偶性的性质,结合充分条件和必要条
8、件的定义进行判断即可【详解】设,若函数是上的奇函数,则,所以,函数的图象关于轴对称.所以,“是奇函数”“的图象关于轴对称”;若函数是上的偶函数,则,所以,函数的图象关于轴对称.所以,“的图象关于轴对称”“是奇函数”.因此,“的图象关于轴对称”是“是奇函数”的必要不充分条件.故选:B.【点睛】本题主要考查充分条件和必要条件的判断,结合函数奇偶性的性质判断是解决本题的关键,考查推理能力,属于中等题.7A【解析】由的解集,可知及,进而可求出方程的解,从而可求出的解集.【详解】由的解集为,可知且,令,解得,因为,所以的解集为,故选:A.【点睛】本题考查一元一次不等式、一元二次不等式的解集,考查学生的计
9、算求解能力与推理能力,属于基础题.8D【解析】因为要对600个零件进行编号,所以编号必须是三位数,因此按要求从第6行第6列开始向右读取数据,大于600的,重复出现的舍去,直至得到第六个编号.【详解】从第6行第6列开始向右读取数据,编号内的数据依次为:,因为535重复出现,所以符合要求的数据依次为,故第6个数据为578.选D.【点睛】本题考查了随机数表表的应用,正确掌握随机数表法的使用方法是解题的关键.9A【解析】利用统计图结合分层抽样性质能求出样本容量,利用条形图能求出抽取的户主对四居室满意的人数【详解】样本容量为:(150+250+400)30%240,抽取的户主对四居室满意的人数为:故选A
10、【点睛】本题考查样本容量和抽取的户主对四居室满意的人数的求法,是基础题,解题时要认真审题,注意统计图的性质的合理运用10A【解析】先由题和抛物线的性质求得点P的坐标和双曲线的半焦距c的值,再利用双曲线的定义可求得a的值,即可求得离心率.【详解】由题意知,抛物线焦点F1,0,准线与x轴交点F(-1,0),双曲线半焦距c=1,设点Q(-1,y) FPQ是以点P为直角顶点的等腰直角三角形,即PF=PQ,结合P点在抛物线上,所以PQ抛物线的准线,从而PFx轴,所以P1,2,2a=PF-PF=22-2 即a=2-1.故双曲线的离心率为e=12-1=2+1.故选A【点睛】本题考查了圆锥曲线综合,分析题目,
11、画出图像,熟悉抛物线性质以及双曲线的定义是解题的关键,属于中档题.11C【解析】根据古典概型概率计算公式,计算出概率并求得数学期望,由此判断出正确选项.【详解】表示取出的为一个白球,所以.表示取出一个黑球,所以.表示取出两个球,其中一黑一白,表示取出两个球为黑球,表示取出两个球为白球,所以.所以,.故选:C【点睛】本小题主要考查离散型随机变量分布列和数学期望的计算,属于中档题.12C【解析】根据命题的否定,可以写出:,所以选C.二、填空题:本题共4小题,每小题5分,共20分。13【解析】由已知利用诱导公式可求,进而根据同角三角函数基本关系即可求解.【详解】,.故答案为:.【点睛】本小题主要考查
12、诱导公式、同角三角函数的基本关系式,属于基础题.14【解析】由可知R为中点,设,由过切点的切线方程即可求得,,代入,则在直线上,即可得方程为,将 ,代入化简可得,则直线过定点,由则点在以为直径的圆上,则.即可求得.【详解】如图,由可知R为MN的中点,所以,设,则切线PM的方程为,即,同理可得,因为PM,PN都过,所以,所以在直线上,从而直线MN方程为,因为,所以,即直线MN方程为,所以直线MN过定点,所以R在以OQ为直径的圆上,所以.故答案为: .【点睛】本题考查直线和圆的位置关系,考查圆的切线方程,定点和圆上动点距离的最值问题,考查学生的数形结合能力和计算能力,难度较难.1518【解析】先由
13、,可得,再结合等差数列的前项和公式求解即可.【详解】解:因为,所以,.故答案为:18.【点睛】本题考查了等差数列基本量的运算,重点考查了等差数列的前项和公式,属基础题.16【解析】 ,可行域如图,直线 与圆 相切时取最大值,由 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2)【解析】(1)零点分段解不等式即可(2)等价于,由,得不等式即可求解【详解】(1)当时,当时,由,解得;当时,由,解得;当时,由,解得.综上可知,原不等式的解集为.(2).存在使得成立,等价于.又因为,所以,即.解得,结合,所以实数的取值范围为.【点睛】本题考查绝对值不等式的解法,考查不等式
14、恒成立及最值,考查转化思想,是中档题18(1);(2)证明见详解,【解析】(1)根据,可得,然后作差,可得结果.(2)根据(1)的结论,用取代,得到新的式子,然后作差,可得结果,最后根据等比数列的前项和公式,可得结果.【详解】(1)由,则-可得:所以(2)由(1)可知:则-可得:则,且令,则,所以数列是首项为,公比为的等比数列所以【点睛】本题主要考查递推公式以及之间的关系的应用,考验观察能力以及分析能力,属中档题.19(1)见解析(2)最小值为1【解析】(1)根据抛物线的定义,判断出的轨迹为抛物线,并由此求得轨迹的方程.设出两点的坐标,利用导数求得切线的方程,由此求得点的坐标.写出直线的方程,
15、联立直线的方程和曲线的方程,根据韦达定理求得点的坐标,并由此判断出始终在直线上,且.(2)设直线的倾斜角为,求得的表达式,求得的表达式,由此求得四边形的面积的表达式进而求得四边形的面积的最小值【详解】(1)动圆过定点,且与直线相切,动圆圆心到定点和定直线的距离相等,动圆圆心的轨迹是以为焦点的抛物线,轨迹的方程为:,设,直线的方程为:,即:,同理,直线的方程为:,由可得:, 直线方程为:,联立可得:, ,点始终在直线上且;(2)设直线的倾斜角为,由(1)可得:, 四边形的面积为:,当且仅当或,即时取等号,四边形的面积的最小值为1.【点睛】本小题主要考查动点轨迹方程的求法,考查直线和抛物线的位置关
16、系,考查抛物线中四边形面积的最值的计算,考查运算求解能力,属于中档题.20 (1)见证明;(2) 【解析】(1)取PD中点G,可证EFGA是平行四边形,从而, 得证线面平行;(2)取AD中点O,连结PO,可得面,连交于,可证是二面角的平面角,再在中求解即得【详解】(1)证明:取PD中点G,连结为的中位线,且, 又且,且,EFGA是平行四边形,则, 又面,面, 面; (2)解:取AD中点O,连结PO, 面面,为正三角形,面,且, 连交于,可得,则,即 连,又,可得平面,则, 即是二面角的平面角, 在中,即二面角的正切值为【点睛】本题考查线面平行证明,考查求二面角求二面角的步骤是一作二证三计算即先
17、作出二面角的平面角,然后证明此角是要求的二面角的平面角,最后在三角形中计算21(1);(2)当BP为cm时,+取得最小值【解析】(1)作AECD,垂足为E,则CE10,DE10,设BCx,根据得到,解得答案.(2)设BPt,则,故,设,求导得到函数单调性,得到最值.【详解】(1)作AECD,垂足为E,则CE10,DE10,设BCx,则,化简得,解之得,或(舍),(2)设BPt,则,设,令f(t)0,因为,得,当时,f(t)0,f(t)是减函数;当时,f(t)0,f(t)是增函数,所以,当时,f(t)取得最小值,即tan(+)取得最小值,因为恒成立,所以f(t)0,所以tan(+)0,因为ytanx在上是增函数,所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 白酒外箱打样协议书
- 同意优酷的协议书
- 2025年RISC-VSD卡接口技术考核试卷
- 食堂用工免责协议书
- 设备进场安全协议书模板
- 寝室离线协助协议书
- 众筹协议书无效
- 太阳能电池片切割工艺损耗控制考核试卷
- 2025年工业机器人编程程序员编程能力考核试卷
- 2025年快递物流行业智能物流货运模式研究报告及未来发展趋势预测
- 提高晨间护理合格率
- 2025上半年上海闵行区区管国企公开招聘35人笔试参考题库附带答案详解
- 台球俱乐部福利活动方案
- 软件框架互操作研究-洞察阐释
- DB3213-T 1052-2023 番茄椰糠基质架式栽培技术规程
- 儿童皮肤护理课件
- 体育俱乐部公司策划方案
- 上下级沟通技巧
- 国资委面试题及答案
- 2025-2030年中国胶粘剂行业市场深度分析及前景趋势与投资研究报告
- 大学计算机-计算思维与信息素养 课件 第6章 现代计算机-复杂环境下程序执行
评论
0/150
提交评论