




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1下边程序框图的算法源于我国古代的中国剩余定理.把运算“正整数除以正整数所得的余数是”记为“”,例如.执行该程序框图
2、,则输出的等于( )A16B17C18D192设为坐标原点,是以为焦点的抛物线上任意一点,是线段上的点,且,则直线的斜率的最大值为( )ABCD13已知向量与向量平行,且,则( )ABCD4已知的部分图象如图所示,则的表达式是( )ABCD5已知集合,将集合的所有元素从小到大一次排列构成一个新数列,则( )A1194B1695C311D10956已知函数的图象在点处的切线方程是,则( )A2B3C-2D-37已知为一条直线,为两个不同的平面,则下列说法正确的是( )A若,则B若,则C若,则D若,则8已知是函数的极大值点,则的取值范围是ABCD9已知,由程序框图输出的为( )A1B0CD1020
3、19年10月1日,为了庆祝中华人民共和国成立70周年,小明、小红、小金三人以国庆为主题各自独立完成一幅十字绣赠送给当地的村委会,这三幅十字绣分别命名为“鸿福齐天”、“国富民强”、“兴国之路”,为了弄清“国富民强”这一作品是谁制作的,村支书对三人进行了问话,得到回复如下:小明说:“鸿福齐天”是我制作的;小红说:“国富民强”不是小明制作的,就是我制作的;小金说:“兴国之路”不是我制作的,若三人的说法有且仅有一人是正确的,则“鸿福齐天”的制作者是( )A小明B小红C小金D小金或小明11点为棱长是2的正方体的内切球球面上的动点,点为的中点,若满足,则动点的轨迹的长度为( )ABCD12已知某几何体的三
4、视图如图所示,则该几何体的体积是( )AB64CD32二、填空题:本题共4小题,每小题5分,共20分。13展开式中项的系数是_14已知关于空间两条不同直线m、n,两个不同平面、,有下列四个命题:若且,则;若且,则;若且,则;若,且,则.其中正确命题的序号为_.15已知边长为的菱形中,现沿对角线折起,使得二面角为,此时点,在同一个球面上,则该球的表面积为_.16设,满足约束条件,若的最大值是10,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某商店举行促销反馈活动,顾客购物每满200元,有一次抽奖机会(即满200元可以抽奖一次,满400元可以抽奖两次,依次类推
5、).抽奖的规则如下:在一个不透明口袋中装有编号分别为1,2,3,4,5的5个完全相同的小球,顾客每次从口袋中摸出一个小球,共摸三次,每次摸出的小球均不放回口袋,若摸得的小球编号一次比一次大(如1,2,5),则获得一等奖,奖金40元;若摸得的小球编号一次比一次小(如5,3,1),则获得二等奖,奖金20元;其余情况获得三等奖,奖金10元.(1)某人抽奖一次,求其获奖金额X的概率分布和数学期望;(2)赵四购物恰好满600元,假设他不放弃每次抽奖机会,求他获得的奖金恰好为60元的概率.18(12分)已知函数,.(1)求证:在区间上有且仅有一个零点,且;(2)若当时,不等式恒成立,求证:.19(12分)
6、在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)写出直线的普通方程和曲线的直角坐标方程;(2)设直线与曲线相交于两点,的顶点也在曲线上运动,求面积的最大值.20(12分)每年3月20日是国际幸福日,某电视台随机调查某一社区人们的幸福度现从该社区群中随机抽取18名,用“10分制”记录了他们的幸福度指数,结果见如图所示茎叶图,其中以小数点前的一位数字为茎,小数点后的一位数字为叶若幸福度不低于8.5分,则称该人的幸福度为“很幸福”()求从这18人中随机选取3人,至少有1人是“很幸福”的概率;()以这18人的样本数据来估计整个社区
7、的总体数据,若从该社区(人数很多)任选3人,记表示抽到“很幸福”的人数,求的分布列及21(12分)在直角坐标系中,点的坐标为,直线的参数方程为(为参数,为常数,且).以直角坐标系的原点为极点,轴的正半轴为极轴,且两个坐标系取相等的长度单位,建立极坐标系,圆的极坐标方程为.设点在圆外.(1)求的取值范围.(2)设直线与圆相交于两点,若,求的值.22(10分)已知数列是等差数列,前项和为,且,(1)求(2)设,求数列的前项和参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】由已知中的程序框图可知,该程序的功能是利用循环结构计算
8、并输出变量 的值,模拟程序的运行过程,代入四个选项进行验证即可.【详解】解:由程序框图可知,输出的数应为被3除余2,被5除余2的且大于10的最小整数.若输出 ,则不符合题意,排除;若输出,则,符合题意.故选:B.【点睛】本题考查了程序框图.当循环的次数不多,或有规律时,常采用循环模拟或代入选项验证的方法进行解答.2C【解析】试题分析:设,由题意,显然时不符合题意,故,则,可得:,当且仅当时取等号,故选C考点:1抛物线的简单几何性质;2均值不等式【方法点晴】本题主要考查的是向量在解析几何中的应用及抛物线标准方程方程,均值不等式的灵活运用,属于中档题解题时一定要注意分析条件,根据条件,利用向量的运
9、算可知,写出直线的斜率,注意均值不等式的使用,特别是要分析等号是否成立,否则易出问题3B【解析】设,根据题意得出关于、的方程组,解出这两个未知数的值,即可得出向量的坐标.【详解】设,且,由得,即,由,所以,解得,因此,.故选:B.【点睛】本题考查向量坐标的求解,涉及共线向量的坐标表示和向量数量积的坐标运算,考查计算能力,属于中等题.4D【解析】由图象求出以及函数的最小正周期的值,利用周期公式可求得的值,然后将点的坐标代入函数的解析式,结合的取值范围求出的值,由此可得出函数的解析式.【详解】由图象可得,函数的最小正周期为,.将点代入函数的解析式得,得,则,因此,.故选:D.【点睛】本题考查利用图
10、象求三角函数解析式,考查分析问题和解决问题的能力,属于中等题.5D【解析】确定中前35项里两个数列中的项数,数列中第35项为70,这时可通过比较确定中有多少项可以插入这35项里面即可得,然后可求和【详解】时,所以数列的前35项和中,有三项3,9,27,有32项,所以故选:D【点睛】本题考查数列分组求和,掌握等差数列和等比数列前项和公式是解题基础解题关键是确定数列的前35项中有多少项是中的,又有多少项是中的6B【解析】根据求出再根据也在直线上,求出b的值,即得解.【详解】因为,所以所以,又也在直线上,所以,解得所以.故选:B【点睛】本题主要考查导数的几何意义,意在考查学生对这些知识的理解掌握水平
11、.7D【解析】A. 若,则或,故A错误;B. 若,则或故B错误;C. 若,则或,或与相交;D. 若,则,正确.故选D.8B【解析】方法一:令,则,当,时,单调递减,时,且,即在上单调递增,时,且,即在上单调递减,是函数的极大值点,满足题意;当时,存在使得,即,又在上单调递减,时,所以,这与是函数的极大值点矛盾综上,故选B方法二:依据极值的定义,要使是函数的极大值点,须在的左侧附近,即;在的右侧附近,即易知,时,与相切于原点,所以根据与的图象关系,可得,故选B9D【解析】试题分析:,所以,所以由程序框图输出的为.故选D考点:1、程序框图;2、定积分10B【解析】将三个人制作的所有情况列举出来,再
12、一一论证.【详解】依题意,三个人制作的所有情况如下所示:123456鸿福齐天小明小明小红小红小金小金国富民强小红小金小金小明小红小明兴国之路小金小红小明小金小明小红若小明的说法正确,则均不满足;若小红的说法正确,则4满足;若小金的说法正确,则3满足.故“鸿福齐天”的制作者是小红,故选:B.【点睛】本题考查推理与证明,还考查推理论证能力以及分类讨论思想,属于基础题.11C【解析】设的中点为,利用正方形和正方体的性质,结合线面垂直的判定定理可以证明出平面,这样可以确定动点的轨迹,最后求出动点的轨迹的长度.【详解】设的中点为,连接,因此有,而,而平面,因此有平面,所以动点的轨迹平面与正方体的内切球的
13、交线. 正方体的棱长为2,所以内切球的半径为,建立如下图所示的以为坐标原点的空间直角坐标系:因此有,设平面的法向量为,所以有,因此到平面的距离为:,所以截面圆的半径为:,因此动点的轨迹的长度为.故选:C【点睛】本题考查了线面垂直的判定定理的应用,考查了立体几何中轨迹问题,考查了球截面的性质,考查了空间想象能力和数学运算能力.12A【解析】根据三视图,还原空间几何体,即可得该几何体的体积.【详解】由该几何体的三视图,还原空间几何体如下图所示:可知该几何体是底面在左侧的四棱锥,其底面是边长为4的正方形,高为4,故.故选:A【点睛】本题考查了三视图的简单应用,由三视图还原空间几何体,棱锥体积的求法,
14、属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13-20【解析】根据二项式定理的通项公式,再分情况考虑即可求解【详解】解:展开式中项的系数:二项式由通项公式当时,项的系数是,当时,项的系数是,故的系数为;故答案为:【点睛】本题主要考查二项式定理的应用,注意分情况考虑,属于基础题14【解析】由直线与直线的位置关系,直线与平面的位置关系,面面垂直的判定定理和线面垂直的定义判断【详解】若且,的位置关系是平行、相交或异面,错;若且,则或者,错;若,设过的平面与交于直线,则,又,则,正确;若,且,由线面垂直的定义知,正确故答案为:【点睛】本题考查直线与直线的位置关系,直线与平面的位置关系,
15、面面垂直的判定定理和线面垂直的定义,考查空间线面间的位置关系,掌握空间线线、线面、面面位置关系是解题基础15【解析】分别取,的中点,连接,由图形的对称性可知球心必在的延长线上,设球心为,半径为,由勾股定理可得、,再根据球的面积公式计算可得;【详解】如图,分别取,的中点,连接,则易得,由图形的对称性可知球心必在的延长线上,设球心为,半径为,可得,解得,.故该球的表面积为.故答案为:【点睛】本题考查多面体的外接球的计算,属于中档题.16【解析】画出不等式组表示的平面区域,数形结合即可容易求得结果.【详解】画出不等式组表示的平面区域如下所示:目标函数可转化为与直线平行,数形结合可知当且仅当目标函数过
16、点,取得最大值,故可得,解得.故答案为:.【点睛】本题考查由目标函数的最值求参数值,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)分布见解析,期望为;(2).【解析】(1)先明确X的可能取值,分别求解其概率,然后写出分布列,利用期望公式可求期望;(2)获得的奖金恰好为60元,可能是三次二等奖,也可能是一次一等奖,两次三等奖,然后分别求解概率即可.【详解】(1)由题意知,随机变量X的可能取值为10,20,40且,所以,即随机变量X的概率分布为X102040P所以随机变量X的数学期望.(2)由题意知,赵四有三次抽奖机会,设恰好获得60元为事件A,因为602034
17、01010,所以【点睛】本题主要考查随机变量的分布列及数学期望,明确随机变量的所有取值是求解的第一步,再求解对应的概率,侧重考查数学建模的核心素养.18(1)详见解析;(2)详见解析.【解析】(1)利用求导数,判断在区间上的单调性,然后再证异号,即可证明结论;(2)当时,不等式恒成立,分离参数只需时,恒成立,设(),需,根据(1)中的结论先求出,再构造函数结合导数法,证明即可.【详解】(1),令,则,所以在区间上是增函数,则,所以在区间上是增函数.又因为,所以在区间上有且仅有一个零点,且.(2)由题意,在区间上恒成立,即在区间上恒成立,当时,;当时,恒成立,设(),所以.由(1)可知,使,所以
18、,当时,当时,由此在区间上单调递减,在区间上单调递增,所以.又因为,所以,从而,所以.令,则,所以在区间上是增函数,所以,故.【点睛】本题考查导数的综合应用,涉及到函数的单调性、函数的零点、极值最值、不等式的证明,分离参数是解题的关键,意在考查逻辑推理、数学计算能力,属于较难题.19(1):,:;(2)【解析】(1)由直线参数方程消去参数即可得直线的普通方程,根据极坐标方程和直角坐标方程互化的公式即可得曲线的直角坐标方程;(2)由即可得的底,由点到直线的距离的最大值为即可得高的最大值,即可得解.【详解】(1)由消去参数得直线的普通方程为,由得,曲线的直角坐标方程为;(2)曲线即,圆心到直线的距离,所以,又 点到直线的距离的最大值为,所以面积的最大值为.【点睛】本题考查了参数方程、极坐标方程和直角坐标方程的互化,考查了直线与圆的位置关系,属于中档题.20 (). ()见解析.【解析】()人中很幸福的有人,可以先计算其逆事件,即人都认为不很幸福的概率,再用减去人都认为不很幸福的概率即可;()根据题意,随机变量,列出分布列,根据公式求出期望即可【详解】()设事件抽出的人至少有人是“很幸福”的,则表示人都认为不很幸福()根据题意,随机变量
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教师教育教学反思与改进任务的综合考核
- 自理能力评分试题及答案
- 水处理考试题及答案
- 环保题目面试题及答案
- 注册土木工程师考试复习承载方法试题及答案
- 教育学各章试题及答案
- 电动汽车智能驾驶系统考核试题及答案
- 安全工程师考试新趋势试题及答案
- 市场商务笔试题目及答案
- 鹰潭四中考试试卷及答案
- 2025年区块链工程师技能测评试卷:区块链分布式账本技术实操考核
- 2025商业店铺买卖合同范本下载
- (二模)2025年汕头市高三普通高考第二次模拟考试语文试卷(含答案)
- 河北开放大学2025年《医药企业管理》形成性考核1-4答案
- 2025届宁夏回族自治区银川市第一中学高考全国统考预测密卷语文试卷含解析
- 101二元一次方程组的概念【9个必考点】(必考点分类集训)(人教版2024)(原卷版)
- 压花艺术-发现植物之美智慧树知到期末考试答案章节答案2024年华南农业大学
- 食品营养学(暨南大学)智慧树知到答案章节测试2023年
- 门禁一卡通系统解决方案
- 煤矿机电运输专业质量标准化管理制度
- 工程款支付审核记录表
评论
0/150
提交评论