云南省玉溪市2021-2022学年高三第二次联考数学试卷含解析_第1页
云南省玉溪市2021-2022学年高三第二次联考数学试卷含解析_第2页
云南省玉溪市2021-2022学年高三第二次联考数学试卷含解析_第3页
云南省玉溪市2021-2022学年高三第二次联考数学试卷含解析_第4页
云南省玉溪市2021-2022学年高三第二次联考数学试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知向量,满足,在上投影为,则的最小值为( )ABCD2定义在上的奇函数满足,若,则( )AB0C1D23已知集合

2、A=x|1x1,则AB=A(1,1)B(1,2)C(1,+)D(1,+)4已知函数为奇函数,且,则( )A2B5C1D35已知Sn为等比数列an的前n项和,a516,a3a432,则S8( )A21B24C85D856已知等比数列满足,等差数列中,为数列的前项和,则( )A36B72CD7已知x,y满足不等式,且目标函数z9x+6y最大值的变化范围20,22,则t的取值范围( )A2,4B4,6C5,8D6,78函数的部分图象大致为( )ABCD9若复数在复平面内对应的点在第二象限,则实数的取值范围是( )ABCD10函数的图象为C,以下结论中正确的是( )图象C关于直线对称;图象C关于点对称

3、;由y =2sin2x的图象向右平移个单位长度可以得到图象C.ABCD11已知,则的取值范围是()A0,1BC1,2D0,212在棱长均相等的正三棱柱中,为的中点,在上,且,则下述结论:;平面平面:异面直线与所成角为其中正确命题的个数为( )A1B2C3D4二、填空题:本题共4小题,每小题5分,共20分。13点P是ABC所在平面内一点且在ABC内任取一点,则此点取自PBC内的概率是_14设O为坐标原点, ,若点B(x,y)满足,则的最大值是_15已知函数函数,则不等式的解集为_16九章算术中记载了“今有共买豕,人出一百,盈一百;人出九十,适足。问人数、豕价各几何?”.其意思是“若干个人合买一头

4、猪,若每人出100,则会剩下100;若每人出90,则不多也不少。问人数、猪价各多少?”.设分别为人数、猪价,则_,_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知an是一个公差大于0的等差数列,且满足a3a5=45,a2+a6=1(I)求an的通项公式;()若数列bn满足:,求bn的前n项和18(12分)自湖北武汉爆发新型冠状病毒惑染的肺炎疫情以来,武汉医护人员和医疗、生活物资严重缺乏,全国各地纷纷驰援.截至1月30日12时,湖北省累计接收捐赠物资615.43万件,包括医用防护服2.6万套N95口軍47.9万个,医用一次性口罩172.87万个,护目镜3.93

5、万个等.中某运输队接到给武汉运送物资的任务,该运输队有8辆载重为6t的A型卡车,6辆载重为10t的B型卡车,10名驾驶员,要求此运输队每天至少运送720t物资.已知每辆卡车每天往返的次数:A型卡车16次,B型卡车12次;每辆卡车每天往返的成本:A型卡车240元,B型卡车378元.求每天派出A型卡车与B型卡车各多少辆,运输队所花的成本最低?19(12分)已知函数,设的最小值为m.(1)求m的值;(2)是否存在实数a,b,使得,?并说明理由.20(12分)如图,在四棱柱中,底面为菱形,.(1)证明:平面平面;(2)若,是等边三角形,求二面角的余弦值.21(12分)已知函数(,)满足下列3个条件中的

6、2个条件:函数的周期为;是函数的对称轴;且在区间上单调.()请指出这二个条件,并求出函数的解析式;()若,求函数的值域.22(10分)记数列的前项和为,已知成等差数列.(1)证明:数列是等比数列,并求的通项公式;(2)记数列的前项和为,求.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】根据在上投影为,以及,可得;再对所求模长进行平方运算,可将问题转化为模长和夹角运算,代入即可求得.【详解】在上投影为,即 又 本题正确选项:【点睛】本题考查向量模长的运算,对于含加减法运算的向量模长的求解,通常先求解模长的平方,再开平方求

7、得结果;解题关键是需要通过夹角取值范围的分析,得到的最小值.2C【解析】首先判断出是周期为的周期函数,由此求得所求表达式的值.【详解】由已知为奇函数,得,而,所以,所以,即的周期为.由于,所以,.所以,又,所以.故选:C【点睛】本小题主要考查函数的奇偶性和周期性,属于基础题.3C【解析】根据并集的求法直接求出结果.【详解】 , ,故选C.【点睛】考查并集的求法,属于基础题.4B【解析】由函数为奇函数,则有,代入已知即可求得.【详解】.故选:.【点睛】本题考查奇偶性在抽象函数中的应用,考查学生分析问题的能力,难度较易.5D【解析】由等比数列的性质求得a1q416,a12q532,通过解该方程求得

8、它们的值,求首项和公比,根据等比数列的前n项和公式解答即可.【详解】设等比数列an的公比为q,a516,a3a432,a1q416,a12q532,q2,则,则,故选:D.【点睛】本题主要考查等比数列的前n项和,根据等比数列建立条件关系求出公比是解决本题的关键,属于基础题.6A【解析】根据是与的等比中项,可求得,再利用等差数列求和公式即可得到.【详解】等比数列满足,所以,又,所以,由等差数列的性质可得.故选:A【点睛】本题主要考查的是等比数列的性质,考查等差数列的求和公式,考查学生的计算能力,是中档题.7B【解析】作出可行域,对t进行分类讨论分析目标函数的最大值,即可求解.【详解】画出不等式组

9、所表示的可行域如图AOB当t2时,可行域即为如图中的OAM,此时目标函数z9x+6y 在A(2,0)取得最大值Z18不符合题意t2时可知目标函数Z9x+6y在的交点()处取得最大值,此时Zt+16由题意可得,20t+1622解可得4t6故选:B【点睛】此题考查线性规划,根据可行域结合目标函数的最大值的取值范围求参数的取值范围,涉及分类讨论思想,关键在于熟练掌握截距型目标函数的最大值最优解的处理办法.8B【解析】图像分析采用排除法,利用奇偶性判断函数为奇函数,再利用特值确定函数的正负情况。【详解】,故奇函数,四个图像均符合。当时,排除C、D当时,排除A。故选B。【点睛】图像分析采用排除法,一般可

10、供判断的主要有:奇偶性、周期性、单调性、及特殊值。9B【解析】复数,在复平面内对应的点在第二象限,可得关于a的不等式组,解得a的范围.【详解】,由其在复平面对应的点在第二象限,得,则.故选:B.【点睛】本题考查了复数的运算法则、几何意义、不等式的解法,考查了推理能力与计算能力,属于基础题10B【解析】根据三角函数的对称轴、对称中心和图象变换的知识,判断出正确的结论.【详解】因为,又,所以正确.,所以正确.将的图象向右平移个单位长度,得,所以错误.所以正确,错误.故选:B【点睛】本小题主要考查三角函数的对称轴、对称中心,考查三角函数图象变换,属于基础题.11D【解析】设,可得,构造()22,结合

11、,可得,根据向量减法的模长不等式可得解.【详解】设,则,()22|224,所以可得:,配方可得,所以,又 则0,2故选:D【点睛】本题考查了向量的运算综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.12B【解析】设出棱长,通过直线与直线的垂直判断直线与直线的平行,推出的正误;判断是的中点推出正的误;利用直线与平面垂直推出平面与平面垂直推出正的误;建立空间直角坐标系求出异面直线与所成角判断的正误【详解】解:不妨设棱长为:2,对于连结,则,即与不垂直,又,不正确;对于,连结,在中,而,是的中点,所以,正确;对于由可知,在中,连结,易知,而在中,即,又,面,平面平面,正确;以为坐标原

12、点,平面上过点垂直于的直线为轴,所在的直线为轴,所在的直线为轴,建立如图所示的直角坐标系;, , , , ;, ;异面直线与所成角为,故不正确故选:【点睛】本题考查命题的真假的判断,棱锥的结构特征,直线与平面垂直,直线与直线的位置关系的应用,考查空间想象能力以及逻辑推理能力二、填空题:本题共4小题,每小题5分,共20分。13【解析】设是中点,根据已知条件判断出三点共线且是线段靠近的三等分点,由此求得,结合几何概型求得点取自三角形的概率.【详解】设是中点,因为,所以,所以三点共线且点是线段靠近的三等分点,故,所以此点取自内的概率是故答案为:【点睛】本小题主要考查三点共线的向量表示,考查几何概型概

13、率计算,属于基础题.14【解析】 ,可行域如图,直线 与圆 相切时取最大值,由 15【解析】,所以,所以的解集为。点睛:本题考查绝对值不等式。本题先对绝对值函数进行分段处理,再得到的解析式,求得的分段函数解析式,再解不等式即可。绝对值函数一般都去绝对值转化为分段函数处理。1610 900 【解析】由题意列出方程组,求解即可.【详解】由题意可得,解得.故答案为10 900【点睛】本题主要考查二元一次方程组的解法,用消元法来求解即可,属于基础题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(I);()【解析】()设等差数列的公差为,则依题设由,可得由,得,可得所以可得()设

14、,则.即,可得,且所以,可知所以,所以数列是首项为4,公比为2的等比数列所以前项和考点:等差数列通项公式、用数列前项和求数列通项公式18每天派出A型卡车辆,派出B型卡车辆,运输队所花成本最低【解析】设每天派出A型卡车辆,则派出B型卡车辆,由题意列出约束条件,作出可行域,求出使目标函数取最小值的整数解,即可得解.【详解】设每天派出A型卡车辆,则派出B型卡车辆,运输队所花成本为元,由题意可知,整理得,目标函数,如图所示,为不等式组表示的可行域,由图可知,当直线经过点时,最小,解方程组,解得,然而,故点不是最优解.因此在可行域的整点中,点使得取最小值,即,故每天派出A型卡车辆,派出B型卡车辆,运输队

15、所花成本最低.【点睛】本题考查了线性规划问题中的最优整数解问题,考查了数形结合的思想,解题关键在于列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数,同时注意整点的选取,属于中档题.19(1)(2)不存在;详见解析【解析】(1)将函数去绝对值化为分段函数的形式,从而可求得函数的最小值,进而可得m.(2)由,利用基本不等式即可求出.【详解】(1);(2),若,同号,不成立;或,异号,不成立;故不存在实数,使得,.【点睛】本题考查了分段函数的最值、基本不等式的应用,属于基础题.20(1)证明见解析(2)【解析】(1)根据面面垂直的判定定理可知,只需证明平面即可由为菱形可得,连接和与的交点

16、,由等腰三角形性质可得,即能证得平面;(2)由题意知,平面,可建立空间直角坐标系,以为坐标原点,所在直线为轴,所在直线为轴,所在直线为轴,再分别求出平面的法向量,平面的法向量,即可根据向量法求出二面角的余弦值【详解】(1)如图,设与相交于点,连接,又为菱形,故,为的中点.又,故.又平面,平面,且,故平面,又平面,所以平面平面.(2)由是等边三角形,可得,故平面,所以,两两垂直.如图以为坐标原点,所在直线为轴,所在直线为轴,所在直线为轴,建立空间直角坐标系.不妨设,则,则,设为平面的法向量,则即可取,设为平面的法向量,则即可取,所以.所以二面角的余弦值为0.【点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理的应用,以及利用向量法求二面角,意在考查学生的直观想象能力,逻辑推理能力和数学运算能力,属于基础题21()只有成立,;().【解析】()依次讨论成立,成立,成立,计算得到只有成立,得到答案.()得到,得到函数值域.【详解】()由可得,;由得:,;由得,;若成立,则,若成立,则,不合题意,若成立,则,与中的矛盾,所以不成立,所以只有成立,.()由题意得,所以函数的值域

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论