高中数学必修五全套学案_第1页
高中数学必修五全套学案_第2页
高中数学必修五全套学案_第3页
高中数学必修五全套学案_第4页
高中数学必修五全套学案_第5页
已阅读5页,还剩111页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、PAGE PAGE 1161.1.1 正弦定理 学习目标 1. 掌握正弦定理的内容;2. 掌握正弦定理的证明方法;3. 会运用正弦定理解斜三角形的两类基本问题 学习过程 一、课前准备试验:固定ABC的边CB及B,使边AC绕着顶点C转动思考:C的大小与它的对边AB的长度之间有怎样的数量关系?显然,边AB的长度随着其对角C的大小的增大而 能否用一个等式把这种关系精确地表示出来? 二、新课导学 学习探究探究1:在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系. 如图,在RtABC中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有,又, 从而在

2、直角三角形ABC中, (探究2:那么对于任意的三角形,以上关系式是否仍然成立?可分为锐角三角形和钝角三角形两种情况:当ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD=,则, 同理可得, 从而 类似可推出,当ABC是钝角三角形时,以上关系式仍然成立请你试试导.新知:正弦定理在一个三角形中,各边和它所对角的 的比相等,即试试:(1)在中,一定成立的等式是( )A B.C. D.(2)已知ABC中,a4,b8,A30,则B等于 理解定理(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k使, ,;(2)等价于 ,(3)正弦定理的基本

3、作用为:已知三角形的任意两角及其一边可以求其他边,如; 已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如; (4)一般地,已知三角形的某些边和角,求其它的边和角的过程叫作解三角形 典型例题例1. 在中,已知,cm,解三角形变式:在中,已知,cm,解三角形例2. 在变式:在三、总结提升 学习小结1. 正弦定理:2. 正弦定理的证明方法:三角函数的定义,还有 等积法,外接圆法,向量法.3应用正弦定理解三角形: 已知两角和一边;已知两边和其中一边的对角 知识拓展,其中为外接圆直径. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂

4、检测(时量:5分钟 满分:10分)计分:1. 在中,若,则是( ).A等腰三角形 B等腰三角形或直角三角形C直角三角形 D等边三角形2. 已知ABC中,ABC114,则abc等于( ).A114 B112 C11 D223. 在ABC中,若,则与的大小关系为( ).A. B. C. D. 、的大小关系不能确定4. 已知ABC中,则= 5. 已知ABC中,A,则= 课后作业 1. 已知ABC中,AB6,A30,B,解此三角形2. 已知ABC中,sinAsinBsinCk(k1)2k (k0),求实数k的取值范围为1.1.2 余弦定理 学习目标 1. 掌握余弦定理的两种表示形式;2. 证明余弦定理

5、的向量方法;3. 运用余弦定理解决两类基本的解三角形问题 学习过程 一、课前准备复习1:在一个三角形中,各 和它所对角的 的 相等,即 = = 复习2:在ABC中,已知,A=45,C=30,解此三角形思考:已知两边及夹角,如何解此三角形呢?二、新课导学 探究新知问题:在中,、的长分别为、. ,同理可得: , 新知:余弦定理:三角形中任何一边的 等于其他两边的 的和减去这两边与它们的夹角的 的积的两倍思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角?从余弦定理,又可得到以下推论:, , 理解定理(1)若C=,则 ,这时由此可知余弦定理是勾股定理的推广,

6、勾股定理是余弦定理的特例(2)余弦定理及其推论的基本作用为:已知三角形的任意两边及它们的夹角就可以求出第三边;已知三角形的三条边就可以求出其它角试试:(1)ABC中,求(2)ABC中,求 典型例题例1. 在ABC中,已知,求和变式:在ABC中,若AB,AC5,且cosC,则BC_例2. 在ABC中,已知三边长,求三角形的最大内角变式:在ABC中,若,求角A三、总结提升 学习小结1. 余弦定理是任何三角形中边角之间存在的共同规律,勾股定理是余弦定理的特例;2. 余弦定理的应用范围: 已知三边,求三角; 已知两边及它们的夹角,求第三边知识拓展在ABC中,若,则角是直角;若,则角是钝角;若,则角是锐

7、角 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 已知a,c2,B150,则边b的长为( ). A. B. C. D. 2. 已知三角形的三边长分别为3、5、7,则最大角为( ).A B C D3. 已知锐角三角形的边长分别为2、3、x,则x的取值范围是( ).A Bx5C 2x Dx54. 在ABC中,|3,|2,与的夹角为60,则|_5. 在ABC中,已知三边a、b、c满足,则C等于 课后作业 1. 在ABC中,已知a7,b8,cosC,求最大角的余弦值2. 在ABC中,AB5,BC7

8、,AC8,求的值.1.1 正弦定理和余弦定理(练习) 学习目标 1. 进一步熟悉正、余弦定理内容;2. 掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形 学习过程 一、课前准备复习1:在解三角形时已知三边求角,用 定理;已知两边和夹角,求第三边,用 定理;已知两角和一边,用 定理复习2:在ABC中,已知 A,a25,b50,解此三角形二、新课导学 学习探究探究:在ABC中,已知下列条件,解三角形.A,a25,b50; A,a,b50; A,a50,b50思考:解的个数情况为何会发生变化?新知:用如下图示分析解的情况(A为锐角时)试试:1. 用图示分析(A为直角时)解的

9、情况?2用图示分析(A为钝角时)解的情况? 典型例题例1. 在ABC中,已知,试判断此三角形的解的情况变式:在ABC中,若,则符合题意的b的值有_个例2. 在ABC中,求的值变式:在ABC中,若,且,求角C三、总结提升 学习小结1. 已知三角形两边及其夹角(用余弦定理解决);2. 已知三角形三边问题(用余弦定理解决);3. 已知三角形两角和一边问题(用正弦定理解决);4. 已知三角形两边和其中一边的对角问题(既可用正弦定理,也可用余弦定理,可能有一解、两解和无解三种情况) 知识拓展在ABC中,已知,讨论三角形解的情况 :当A为钝角或直角时,必须才能有且只有一解;否则无解;当A为锐角时,如果,那

10、么只有一解;如果,那么可以分下面三种情况来讨论:(1)若,则有两解;(2)若,则只有一解;(3)若,则无解 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 已知a、b为ABC的边,A、B分别是a、b的对角,且,则的值=( ).A. B. C. D. 2. 已知在ABC中,sinAsinBsinC357,那么这个三角形的最大角是( ). A135 B90 C120 D1503. 如果将直角三角形三边增加同样的长度,则新三角形形状为( ).A锐角三角形 B直角三角形C钝角三角形 D由增加长度决定

11、4. 在ABC中,sinA:sinB:sinC4:5:6,则cosB 5. 已知ABC中,试判断ABC的形状 课后作业 1. 在ABC中,如果利用正弦定理解三角形有两解,求x的取值范围2. 在ABC中,其三边分别为a、b、c,且满足,求角C1.2应用举例测量距离 学习目标 能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题 学习过程 一、课前准备复习1:在ABC中,C60,ab,c2,则A为 . 复习2:在ABC中,sinA,判断三角形的形状.二、新课导学 典型例题例1. 如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC

12、的距离是55m,BAC=,ACB=. 求A、B两点的距离(精确到0.1m). 提问1:ABC中,根据已知的边和对应角,运用哪个定理比较适当?提问2:运用该定理解题还需要那些边和角呢?分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题题目条件告诉了边AB的对角,AC为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC的对角,应用正弦定理算出AB边. 新知1:基线在测量上,根据测量需要适当确定的 叫基线. 例2. 如图,A、B两点都在河的对岸(不可到达),设计一种测量A、B两点间距离的方法. 分析:这是例1的变式题,研究的是两个 的点之间的距离测量问题. 首先需要构

13、造三角形,所以需要确定C、D两点. 根据正弦定理中已知三角形的任意两个内角与一边既可求出另两边的方法,分别求出AC和BC,再利用余弦定理可以计算出AB的距离. 变式:若在河岸选取相距40米的C、D两点,测得BCA=60,ACD=30,CDB=45,BDA =60.练:两灯塔A、B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东30,灯塔B在观察站C南偏东60,则A、B之间的距离为多少?三、总结提升 学习小结1. 解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形

14、的数学模型;(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.2基线的选取:测量过程中,要根据需要选取合适的基线长度,使测量具有较高的精确度. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:PA C1. 水平地面上有一个球,现用如下方法测量球的大小,用锐角的等腰直角三角板的斜边紧靠球面,P为切点,一条直角边AC紧靠地面,并使三角板与地面垂直,如果测得PA=5cm,则球的半径等于( ). A5cmBCD6cm2.

15、 台风中心从A地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B在A的正东40千米处,B城市处于危险区内的时间为( ).A0.5小时 B1小时C1.5小时 D2小时3. 在中,已知,则的形状( ).A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.等腰三角形或直角三角形4.在中,已知,则的值是 5. 一船以每小时15km的速度向东航行,船在A处看到一个灯塔B在北偏东,行驶h后,船到达C处,看到这个灯塔在北偏东,这时船与灯塔的距离为 km 课后作业 1. 隔河可以看到两个目标,但不能到达,在岸边选取相距km的C、D两点,并测得ACB75,BCD45,ADC3

16、0,ADB45,A、B、C、D在同一个平面,求两目标A、B间的距离.2. 某船在海面A处测得灯塔C与A相距海里,且在北偏东方向;测得灯塔B与A相距海里,且在北偏西方向. 船由向正北方向航行到D处,测得灯塔B在南偏西方向. 这时灯塔C与D相距多少海里?1.2应用举例测量高度 学习目标 1. 能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题;2. 测量中的有关名称. 学习过程 一、课前准备复习1:在ABC中,则ABC的形状是怎样?复习2:在ABC中,、b、c分别为A、B、C的对边,若=1:1:,求A:B:C的值.二、新课导学 学习探究新知:坡度、仰角、俯角、方位角

17、方位角从指北方向顺时针转到目标方向线的水平转角 ;坡度沿余坡向上的方向与水平方向的夹角;仰角与俯角视线与水平线的夹角当视线在水平线之上时,称为仰角;当视线在水平线之下时,称为俯角. 探究:AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法. 分析:选择基线HG,使H、G、B三点共线,要求AB,先求AE在中,可测得角 ,关键求AC在中,可测得角 ,线段 ,又有故可求得AC 典型例题例1. 如图,在山顶铁塔上B处测得地面上一点A的俯角=54,在塔底C处测得A处的俯角=50. 已知铁塔BC部分的高为27.3 m,求出山高CD(精确到1 m)例2. 如图,一辆汽车在

18、一条水平的公路上向正东行驶,到A处时测得公路南侧远处一山顶D在东偏南15的方向上,行驶5km后到达B处,测得此山顶在东偏南25的方向上,仰角为8,求此山的高度CD.问题1:欲求出CD,思考在哪个三角形中研究比较适合呢?问题2:在BCD中,已知BD或BC都可求出CD,根据条件,易计算出哪条边的长?变式:某人在山顶观察到地面上有相距2500米的A、B两个目标,测得目标A在南偏西57,俯角是60,测得目标B在南偏东78,俯角是45,试求山高.三、总结提升 学习小结利用正弦定理和余弦定理来解题时,要学会审题及根据题意画方位图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化. 知识拓展在

19、湖面上高h处,测得云之仰角为,湖中云之影的俯角为,则云高为. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 在ABC中,下列关系中一定成立的是( ).A BC D2. 在ABC中,AB=3,BC=,AC=4,则边AC上的高为( ).A B C D3. D、C、B在地面同一直线上,DC=100米,从D、C两地测得A的仰角分别为和,则A点离地面的高AB等于( )米A100 BC50 D504. 在地面上点,测得一塔塔顶和塔基的仰角分别是和,已知塔基高出地面,则塔身的高为_5. 在ABC中,且三

20、角形有两解,则A的取值范围是 课后作业 1. 为测某塔AB的高度,在一幢与塔AB相距20m的楼的楼顶处测得塔顶A的仰角为30,测得塔基B的俯角为45,则塔AB的高度为多少m?2. 在平地上有A、B两点,A在山的正东,B在山的东南,且在A的南25西300米的地方,在A侧山顶的仰角是30,求山高.1.2应用举例测量角度 学习目标 能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题. 学习过程 一、课前准备复习1:在中,已知,且,求.复习2:设的内角A,B,C的对边分别为a,b,c,且A=,求的值.二、新课导学 典型例题例1. 如图,一艘海轮从A出发,沿北偏东75的方向航行67.5

21、 n mile后到达海岛B,然后从B出发,沿北偏东32的方向航行54.0 n mile后达到海岛C.如果下次航行直接从A出发到达C,此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到0.1,距离精确到0.01n mile)分析:首先由三角形的内角和定理求出角ABC,然后用余弦定理算出AC边,再根据正弦定理算出AC边和AB边的夹角CAB. 例2. 某巡逻艇在A处发现北偏东45相距9海里的C处有一艘走私船,正沿南偏东75的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船? 动手试试练1. 甲、乙

22、两船同时从B点出发,甲船以每小时10(1)km的速度向正东航行,乙船以每小时20km的速度沿南60东的方向航行,1小时后甲、乙两船分别到达A、C两点,求A、C两点的距离,以及在A点观察C点的方向角.练2. 某渔轮在A处测得在北45的C处有一鱼群,离渔轮9海里,并发现鱼群正沿南75东的方向以每小时10海里的速度游去,渔轮立即以每小时14海里的速度沿着直线方向追捕,问渔轮应沿什么方向,需几小时才能追上鱼群?三、总结提升 学习小结1. 已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之.;2已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角

23、形中求出问题的解. 知识拓展已知ABC的三边长均为有理数,A=,B=,则是有理数,还是无理数?因为,由余弦定理知为有理数,所以为有理数. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 从A处望B处的仰角为,从B处望A处的俯角为,则,的关系为( ).A B=C+= D+=2. 已知两线段,若以、为边作三角形,则边所对的角A的取值范围是( ).A BC D3. 关于的方程有相等实根,且A、B、C是的三个内角,则三角形的三边满足( ).A B C D4. ABC中,已知a:b:c=(+1) :(

24、-1): ,则此三角形中最大角的度数为 .5. 在三角形中,已知:A,a,b给出下列说法:(1)若A90,且ab,则此三角形不存在 (2)若A90,则此三角形最多有一解(3)若A90,且a=bsinA,则此三角形为直角三角形,且B=90(4)当A90,ab时三角形一定存在(5)当A90,且bsinAa0,d0,前n项和有最大值,可由0,且0,求得n的值;当0,前n项和有最小值,可由0,且0,求得n的值(2)利用:由,利用二次函数配方法求得最大(小)值时n的值. 动手试试练1. 已知,求数列的通项练2. 有两个等差数列2,6,10,190及2,8,14,200,由这两个等差数列的公共项按从小到大

25、的顺序组成一个新数列,求这个新数列的各项之和. 三、总结提升 学习小结1. 数列通项和前n项和关系;2. 等差数列前项和最大(小)值的两种求法. 知识拓展等差数列奇数项与偶数项的性质如下:1若项数为偶数2n,则;2若项数为奇数2n1,则; 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 下列数列是等差数列的是( ).A. B. C. D. 2. 等差数列中,已知,那么( ).A. 3 B. 4 C. 6 D. 12 3. 等差数列的前m项和为30,前2m项和为100,则它的前3m项和为( )

26、. A. 70 B. 130 C. 140 D. 1704. 在小于100的正整数中共有 个数被7除余2,这些数的和为 .5. 在等差数列中,公差d,则 . 课后作业 1. 在项数为2n+1的等差数列中,所有奇数项和为165,所有偶数项和为150,求n的值.2. 等差数列,该数列前多少项的和最小?2.4等比数列(1) 学习目标 1理解等比数列的概念;探索并掌握等比数列的通项公式、性质;2. 能在具体的问题情境中,发现数列的等比关系,提高数学建模能力;3. 体会等比数列与指数函数的关系. 学习过程 一、课前准备(预习教材P48 P51,找出疑惑之处)复习1:等差数列的定义?复习2:等差数列的通项

27、公式 ,等差数列的性质有: 二、新课导学 学习探究观察:1,2,4,8,16,1,1,20,思考以上四个数列有什么共同特征?新知:1. 等比数列定义:一般地,如果一个数列从第 项起, 一项与它的 一项的 等于 常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的 ,通常用字母 表示(q0),即:= (q0)2. 等比数列的通项公式: ; ; ; 等式成立的条件 3. 等比数列中任意两项与的关系是: 典型例题例1 (1) 一个等比数列的第9项是,公比是,求它的第1项;(2)一个等比数列的第2项是10,第3项是20,求它的第1项与第4项. 小结:关于等比数列的问题首先应想到它的通项公式.例2

28、已知数列中,lg ,试用定义证明数列是等比数列.小结:要证明一个数列是等比数列,只需证明对于任意正整数n,是一个不为0的常数就行了. 动手试试练1. 某种放射性物质不断变化为其他物质,每经过一年剩留的这种物质是原来的84. 这种物质的半衰期为多长(精确到1年)?练2. 一个各项均正的等比数列,其每一项都等于它后面的相邻两项之和,则公比( ). A. B. C. D. 三、总结提升 学习小结1. 等比数列定义;2. 等比数列的通项公式和任意两项与的关系. 知识拓展在等比数列中, 当,q 1时,数列是递增数列; 当,数列是递增数列; 当,时,数列是递减数列; 当,q 1时,数列是递减数列; 当时,

29、数列是摆动数列; 当时,数列是常数列. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 在为等比数列,则( ). A. 36 B. 48 C. 60 D. 722. 等比数列的首项为,末项为,公比为,这个数列的项数n( ). A. 3 B. 4 C. 5 D. 63. 已知数列a,a(1a),是等比数列,则实数a的取值范围是( ).A. a1 B. a0且a1C. a0 D. a0或a14. 设,成等比数列,公比为2,则 .5. 在等比数列中,则公比q . 课后作业 在等比数列中, ,q3,

30、求; ,求和q; ,求; ,求.2.4等比数列(2) 学习目标 1.灵活应用等比数列的定义及通项公式;深刻理解等比中项概念;2. 熟悉等比数列的有关性质,并系统了解判断数列是否成等比数列的方法. 学习过程 一、课前准备(预习教材P51 P54,找出疑惑之处)复习1:等比数列的通项公式 = . 公比q满足的条件是 复习2:等差数列有何性质?二、新课导学 学习探究问题1:如果在a与b中间插入一个数G,使a,G,b成等比数列,则 新知1:等比中项定义如果在a与b中间插入一个数G,使a,G,b成等比数列,那么称这个数G称为a与b的等比中项. 即G= (a,b同号).试试:数4和6的等比中项是 .问题2

31、:1.在等比数列中,是否成立呢?2.是否成立?你据此能得到什么结论?3.是否成立?你又能得到什么结论?新知2:等比数列的性质 在等比数列中,若m+n=p+q,则.试试:在等比数列,已知,那么 . 典型例题例1已知是项数相同的等比数列,仿照下表中的例子填写表格,从中你能得出什么结论?证明你的结论.例自选1自选2是否等比是变式:项数相同等比数列与,数列也一定是等比数列吗?证明你的结论.小结:两个等比数列的积和商仍然是等比数列.例2在等比数列中,已知,且,公比为整数,求.变式:在等比数列中,已知,则 . 动手试试练1. 一个直角三角形三边成等比数列,则( ).A. 三边之比为3:4:5B. 三边之比

32、为1:3C. 较小锐角的正弦为D. 较大锐角的正弦为练2. 在7和56之间插入、,使7、56成等比数列,若插入、,使7、56成等差数列,求的值.三、总结提升 学习小结1. 等比中项定义;2. 等比数列的性质. 知识拓展公比为q的等比数列具有如下基本性质:1. 数列,等,也为等比数列,公比分别为. 若数列为等比数列,则,也等比.2. 若,则. 当m=1时,便得到等比数列的通项公式.3. 若,则.4. 若各项为正,c0,则是一个以为首项,为公差的等差数列. 若是以d为公差的等差数列,则是以为首项,为公比的等比数列. 当一个数列既是等差数列又是等比数列时,这个数列是非零的常数列. 学习评价 自我评价

33、 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 在为等比数列中,那么( ). A. 4 B. 4 C. 2 D. 82. 若9,a1,a2,1四个实数成等差数列,9,b1,b2,b3,1五个实数成等比数列,则b2(a2a1)( ).A8 B8 C8 D3. 若正数a,b,c依次成公比大于1的等比数列,则当x1时,( )A.依次成等差数列 B.各项的倒数依次成等差数列C.依次成等比数列 D.各项的倒数依次成等比数列4. 在两数1,16之间插入三个数,使它们成为等比数列,则中间数等于 .5. 在各项都为正数的等比

34、数列中,则log3+ log3+ log3 . 课后作业 1. 在为等比数列中,求的值.2. 已知等差数列的公差d0,且,成等比数列,求.2.5等比数列的前n项和(1) 学习目标 1. 掌握等比数列的前n项和公式;2. 能用等比数列的前n项和公式解决实际问题. 学习过程 一、课前准备(预习教材P55 P56,找出疑惑之处)复习1:什么是数列前n项和?等差数列的数列前n项和公式是什么?复习2:已知等比数列中,求.二、新课导学 学习探究探究任务: 等比数列的前n项和故事:“国王对国际象棋的发明者的奖励”新知:等比数列的前n项和公式设等比数列它的前n项和是,公比为q0,公式的推导方法一:则 当时,

35、或 当q=1时, 公式的推导方法二:由等比数列的定义,有,即 . (结论同上)公式的推导方法三: . (结论同上)试试:求等比数列,的前8项的和. 典型例题例1已知a1=27,a9=,q0,且第二项,第五项,第十四项分别是等比数列bn的第二项,第三项,第四项(1)求数列an与bn的通项公式;(2)设数列cn对任意正整数n,均有,求c1c2c3c2004的值 动手试试练1. 等差数列的首项为公差为;等差数列的首项为公差为. 如果,且 求数列的通项公式.练2. 如图,作边长为的正三角形的内切圆,在这个圆内作内接正三角形,然后,再作新三角形的内切圆.如此下去,求前个内切圆的面积和.练3. 一个蜂巢里

36、有1只蜜蜂,第1天,它飞出去回了5个伙伴; 第2天, 6只蜜蜂飞出去,各自找回了5个伙伴,如果这个找伙伴的过程继续下去,第6天所有的蜜蜂都归巢后,蜂巢中一共有( )只蜜蜂.A. 55986 B. 46656 C. 216 D. 36三、总结提升 学习小结1. 数列的有关概念和公式;2. 熟练掌握有关概念和公式并能灵活运用,培养解决实际问题的能力. 知识拓展数列前n项和重要公式:; 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 集合的元素个数是( ). A. 59 B. 31 C. 30 D

37、. 292. 若在8和5832之间插入五个数,使其构成一个等比数列,则此等比数列的第五项是().A648B832C1168D19443. 设数列是单调递增的等差数列,前三项的和是12, 前三项的积是48,则它的首项是( ).A. 1 B. 2 C. 4 D. 84. 已知等差数列的前项和为,则使得最大的序号的值为 .5. 在小于100的正整数中,被5除余1的数的个数有 个;这些数的和是 课后作业 1. 观察下面的数阵, 容易看出, 第行最右边的数是, 那么第20行最左边的数是几?第20行所有数的和是多少? 1 2 3 4 5 6 7 8 93.1 不等关系与不等式(1) 学习目标 1. 了解现

38、实世界和日常生活中存在着的不等关系; 2. 会从实际问题中找出不等关系,并能列出不等式与不等式组. 学习过程 一、课前准备复习1:写出一个以前所学的不等关系_复习2:用不等式表示,某地规定本地最低生活保障金x不低于400元_二、新课导学 学习探究探究1:文字语言数学符号文字语言数学符号大于至多小于至少大于等于不少于小于等于不多于探究2:限速40km/h的路标,指示司机在前方路段行驶时,应使汽车的速度v不超过40km/h,写成不等式就是_某品牌酸奶的质量检查规定,酸奶中脂肪的含量p应不少于2.5%,蛋白质的含量q应不少于2.3%,写成不等式组就是_ 典型例题例1 设点A与平面的距离为d,B为平面

39、上的任意一点,则其中不等关系有_例2 某种杂志原以每本2.5元的价格销售,可以售出8万本. 据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本. 若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?例3某钢铁厂要把长度为4000mm的钢管截成500mm和600mm两种按照生产的要求,600mm的数量不能超过500mm钢管的3倍怎样写出满足所有上述不等关系的不等式呢? 动手试试练1 用不等式表示下面的不等关系:(1)a与b的和是非负数_(2)某公路立交桥对通过车辆的高度h“限高4m”_(3)如图(见课本74页),在一个面积为350的矩形地基上建造一个仓库

40、,四周是绿地,仓库的长L大于宽W的4倍练2 有一个两位数大于50而小于60,其个位数字比十位数大2试用不等式表示上述关系,并求出这个两位数(用a和b分别表示这个两位数的十位数字和个位数字)三、总结提升 学习小结1会用不等式(组)表示实际问题的不等关系;2会用不等式(组)研究含有不等关系的问题 知识拓展“等量关系”和“不等量关系”是“数学王国”的两根最为重要的“支柱”,相比较其它一些科学王国来说,“证明精神”可以说是“数学王国”的“血液和灵魂” 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1.

41、下列不等式中不成立的是( ).A B C D2. 用不等式表示,某厂最低月生活费a不低于300元 ( ).A B C D3. 已知,那么的大小关系是( ).A BC D4. 用不等式表示:a与b的积是非正数_5. 用不等式表示:某学校规定学生离校时间t在16点到18点之间_ 课后作业 1. 某夏令营有48人,出发前要从A、B两种型号的帐篷中选择一种A型号的帐篷比B型号的少5顶若只选A型号的,每顶帐篷住4人,则帐篷不够;每顶帐篷住5人,则有一顶帐篷没有住满若只选B型号的,每顶帐篷住3人,则帐篷不够;每顶帐篷住4人,则有帐篷多余设A型号的帐篷有x顶,用不等式将题目中的不等关系表示出来2. 某正版光

42、碟,若售价20元/本,可以发行10张,售价每体高2元,发行量就减少5000张,如何定价可使销售总收入不低于224万元?3.1 不等关系与不等式(2) 学习目标 1. 掌握不等式的基本性质;2. 会用不等式的性质证明简单的不等式;3. 会将一些基本性质结合起来应用. 学习过程 一、课前准备1设点A与平面之间的距离为d,B为平面上任意一点,则点A与平面的距离小于或等于A、B两点间的距离,请将上述不等关系写成不等式.2在初中,我们已经学习过不等式的一些基本性质. 请同学们回忆初中不等式的的基本性质.(1)(2)(3)(4)二、新课导学 学习探究问题1:如何比较两个实数的大小.问题2:同学们能证明以上

43、的不等式的基本性质吗?并利用以上基本性质,证明不等式的下列性质: 典型例题例1 比较大小:(1) ;(2) ;(3) ;(4)当时,_.变式:比较与的大小.例2 已知求证. 变式: 已知,求证:.例3已知的取值范围.变式:已知,求的取值范围. 动手试试练1. 用不等号“”或“0,求证.三、总结提升 学习小结本节课学习了不等式的性质,并用不等式的性质证明了一些简单的不等式,还研究了如何比较两个实数(代数式)的大小作差法,其具体解题步骤可归纳为:第一步:作差并化简,其目标应是n个因式之积或完全平方式或常数的形式;第二步:判断差值与零的大小关系,必要时须进行讨论;第三步:得出结论. 知识拓展 “作差

44、法”、“作商法”比较两个实数的大小(1)作差法的一般步骤:作差变形判号定论(2)作商法的一般步骤:作商变形与1比较大小定论 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 若,则与的大小关系为( ).A BC D随x值变化而变化2. 已知,则一定成立的不等式是( ).A BC D3. 已知,则的范围是( ).A BC D4. 如果,有下列不等式:,其中成立的是 .5. 设,则三者的大小关系为 . 课后作业 1. 比较与的大小.2. 某市环保局为增加城市的绿地面积,提出两个投资方案:方案A为一

45、次性投资500万元;方案B为第一年投资5万元,以后每年都比前一年增加10万元列出不等式表示“经n年之后,方案B的投入不少于方案A的投入”3.2 一元二次不等式及其解法(1) 学习目标 1. 正确理解一元二次不等式的概念,掌握一元二次不等式的解法;2. 理解一元二次不等式、一元二次函数及一元二次方程的关系,能借助二次函数的图象及一元二次方程解一元二次不等式. 学习过程 一、课前准备(预习教材P76 P78,找出疑惑之处)复习1:解下列不等式:; ; .复习2:写出一个以前所学的一元二次不等式_,一元二次函数_,一元二次方程_二、新课导学 学习探究探究一:某同学要上网,有两家公司可供选择,公司A每

46、小时收费1.5元(不足1小时按1小时收费);公司B的收费原则为:在第1小时内(含恰好1小时,下同)收费1.7元,第2小时内收费1.6元,以后每小时减少0.1元(若一次上网时间超过17小时按17小时计算). 如何选择? 归纳:这是一个关于x的一元二次不等式,最终归结为如何解一元二次不等式.新知:只含有_个未知数,并且未知数的最高次数是_的不等式,称为_. 探究二:如何解一元二次不等式?能否与一元二次方程与其图象结合起来解决问题呢? 二次函数()的图象一元二次方程 归纳:解不等式时应先将二次项系数化为正,再根据图象写出其解集. 典型例题例1 求不等式的解集.变式:求下列不等式的解集.(1); (2

47、).例2 求不等式的解集.小结:解一元二次不等式的步骤:(1)将原不等式化为一般式.(2)判断的符号.(3)求方程的根.(4)根据图象写解集. 动手试试练1. 求不等式的解集.练2. 求不等式的解集.三、总结提升 学习小结解一元二次不等式的步骤:(1)将原不等式化为一般式().(2)判断的符号.(3)求方程的根.(4)根据图象写解集. 知识拓展(1)对一切都成立的条件为(2)对一切都成立的条件为 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 已知方程的两根为,且,若,则不等式的解为( ).

48、AR BC或 D无解2. 关于x的不等式的解集是全体实数的条件是( ).A B C D3. 在下列不等式中,解集是的是( ).A BC D4. 不等式的解集是 .5. 的定义域为 . 课后作业 求下列不等式的解集(1); (2).2. 若关于x的一元二次方程有两个不相等的实数根,求m的取值范围.3.2 一元二次不等式及其解法(2) 学习目标 1. 巩固一元二次方程、一元二次不等式与二次函数的关系;2. 进一步熟练解一元二次不等式的解法. 学习过程 一、课前准备复习1:一元二次不等式的解法步骤是1._ 2._3._ 4._复习2: 解不等式.(1); (2).二、新课导学 典型例题例1 某种牌号

49、的汽车在水泥路面上的刹车距离s m和汽车的速度 x km/h有如下的关系:.在一次交通事故中,测得这种车的刹车距离大于39.5m,那么这辆汽车刹车前的速度是多少?(精确到0.01km/h)例2 一个汽车制造厂引进了一条摩托车整车装配流水线,这条流水线生产的摩托车数量x(辆)与创造的价值y(元)之间有如下的关系:若这家工厂希望在一个星期内利用这条流水线创收6000元以上,那么它在一个星期内大约应该生产多少辆摩托车?例3 产品的总成本y(万元)与产量x之间的函数关系式是, 若每台产品的售价为25万元,求生产者不亏本时的最低产量. 动手试试练1 在一次体育课上,某同学以初速度竖直上抛一排球,该排球能

50、够在抛出点2 m以上的位置最多停留多长时间?(注:若不计空气阻力,则竖直上抛的物体距离抛出点的高度h与时间x满足关系,其中)练2某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏;若售价每提高1元,日销售量将减少2盏. 为了使这批台灯每天获得400元以上的销售收入,应怎样制定这批台灯的销售价格?三、总结提升 学习小结进一步熟练掌握一元二次不等式的解法、一元二次不等式与一元二次方程以及一元二次函数的关系 知识拓展(1)连结三个“二次”的纽带是:坐标思想:函数值是否大于零等价于为P是否在轴的上方. (2)三个“二次”关系的实质是数形结合思想:的解图象上的点;的解图象上的点在轴

51、的上方的的取值范围. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 函数的定义域是( ).A或 BC或 D2. 不等式的解集是( ).A2,4 BCR D3. 集合A=,B=,则=( ).A或B且C1,2,3,4 D或4. 不等式的解集为 .5. 已知两个圆的半径分别为1和5,圆心距满足,则两圆的位置关系为 . 课后作业 1. 求下列不等式的解集:(1); (2).2. 据气象部门预报,在距离某码头O南偏东方向600km处的热带风暴中心A在以20km/h的速度向正北方向移动,距风暴中心45

52、0km以内的地区都将受影响. 从现在起多长时间后,该码头将受到热带风暴影响,影响时间为多长?3.2一元二次不等式及其解法(3) 学习目标 1. 掌握一元二次不等式的解法;2. 能借助二次函数的图象及一元二次方程解决相应的不等式问题. 学习过程 一、课前准备复习1:实数比较大小的方法_ 复习2:不等式的解集.二、新课导学 学习探究探究任务:含参数的一元二次不等式的解法问题:解关于的不等式:分析:在上述不等式中含有参数,因此需要先判断参数对的解的影响. 先将不等式化为方程此方程是否有解,若有,分别为_,其大小关系为_试试:能否根据图象写出其解集为_ 典型例题 例1设关于x的不等式的解集为,求.小结

53、:二次不等式给出解集,既可以确定对应的二次函数图象开口方向(即a的符号),又可以确定对应的二次方程的两个根,由此可根据根与系数关系建立系数字母关系式,或通过代入法求解不等式. 变式:已知二次不等式的解集为或,求关于的不等式的解集. 例2 ,且,求的取值范围. 小结:(1)解一元二次不等式含有字母系数时,要讨论根的大小从而确定解集.(2)集合间的关系可以借助数轴来分析,从而确定端点处值的大小关系.例3 若关于的不等式的解集为空集,求的取值范围.变式1:解集为非空.变式2:解集为一切实数.小结:的不同实数取值对不等式的次数有影响,当不等式为一元二次不等式时,的取值还会影响二次函数图象的开口方向,以

54、及和x轴的位置关系. 因此求解中,必须对实数的取值分类讨论. 动手试试练1. 设对于一切都成立,求的范围.练2. 若方程有两个实根,且,求的范围.三、总结提升 学习小结对含有字母系数的一元二次不等式,在求解过程中应对字母的取值范围进行讨论,其讨论的原则性一般分为四类:按二次项系数是否为零进行分类;若二次项系数不为零,再按其符号分类;按判别式的符号分类;按两根的大小分类. 知识拓展解高次不等式时,用根轴法:就是先把不等式化为一端为零,再对另一端分解因式,并求出它的零点,把这些零点标在数轴上,再用一条光滑的曲线,从轴的右端上方起,依次穿过这些零点,则大于零的不等式的解对应着曲线在x轴上方的实数的取

55、值集合;小于零的不等式的解对应着曲线在轴下方的实数的取值集合. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 若方程()的两根为2,3,那么的解集为( ).A或 B或C D2. 不等式的解集是,则等于( ).A14 B14 C10 D103. 关于的不等式的解集为,则实数的取值范围是( ).A B C D4. 不等式的解集是 .5. 若不等式的解集为,则的值分别是 . 课后作业 1. 是什么实数时,关于的一元二次方程没有实数根.2. 解关于的不等式(aR).3.3.1二元一次不等式(组)与

56、平面区域(1) 学习目标 1了解二元一次不等式的几何意义和什么是边界,会用二元一次不等式组表示平面区域;2经历从实际情境中抽象出二元一次不等式组的过程,提高数学建模的能力. 学习过程 一、课前准备复习1:一元二次不等式的定义_二元一次不等式定义_二元一次不等式组的定义_ 复习2:解下列不等式:(1); (2) .二、新课导学 学习探究探究1:一元一次不等式(组)的解集可以表示为数轴上的区间,例如,的解集为 . 那么,在直角坐标系内,二元一次不等式(组)的解集表示什么图形呢?探究2:你能研究:二元一次不等式的解集所表示的图形吗?(怎样分析和定边界?)从特殊到一般:先研究具体的二元一次不等式的解集

57、所表示的图形. 如图:在平面直角坐标系内,x-y=6表示一条直线. 平面内所有的点被直线分成三类:第一类:在直线x-y=6上的点;第二类:在直线x-y=6左上方的区域内的点;第三类:在直线x-y=6右下方的区域内的点. 设点是直线x-y=6上的点,选取点,使它的坐标满足不等式,请同学们完成以下的表格,横坐标x-3-2-10123点P的纵坐标点A的纵坐标并思考:当点A与点P有相同的横坐标时,它们的纵坐标有什么关系?_根据此说说,直线x-y=6左上方的坐标与不等式有什么关系?_直线x-y=6右下方点的坐标呢?在平面直角坐标系中,以二元一次不等式的解为坐标的点都在直线x-y=6的_;反过来,直线x-

58、y=6左上方的点的坐标都满足不等式.因此,在平面直角坐标系中,不等式表示直线x-y=6左上方的平面区域;如图:类似的:二元一次不等式x-y6表示直线x-y=6右下方的区域;如图:直线叫做这两个区域的边界结论:1. 二元一次不等式在平面直角坐标系中表示直线某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)2. 不等式中仅或不包括 ;但含“”“”包括 ; 同侧同号,异侧异号. 典型例题 例1画出不等式表示的平面区域.分析:先画 _(用 线表示),再取 _判断区域,即可画出归纳:画二元一次不等式表示的平面区域常采用“直线定界,特殊点定域”的方法.特殊地,当时,常把原点作为此特殊点.变式:画出

59、不等式表示的平面区域.例2用平面区域表示不等式组的解集归纳:不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分.变式1:画出不等式表示的平面区域.变式2:由直线,和围成的三角形区域(包括边界)用不等式可表示为 . 动手试试练1. 不等式表示的区域在直线的 _练2. 画出不等式组表示的平面区域.三、总结提升 学习小结由于对在直线同一侧的所有点(),把它的坐标()代入,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点,从的正负即可判断表示直线哪一侧的平面区域.(特殊地,当C0时,常把原点作为此特殊点) 知识拓展含绝对值不等式表示的平面区域

60、的作法:(1)去绝对值符号,从而把含绝对值的不等式转化为普通的二元一次不等式(2)一般采用分象限讨论去绝对值符号(3)采用对称性可避免绝对值的讨论(4)在方程或不等式中,若将换成,方程或不等式不变,则这个方程或不等式所表示的图形就关于轴对称 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 不等式表示的区域在直线的( ).A右上方 B右下方 C左上方 D左下方2. 不等式表示的区域是( ). 3.不等式组表示的平面区域是( ).4. 已知点和在直线的两侧,则的取值范围是 .5. 画出表示的平面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论