人教版九年级数学上册知识点及习题归纳_第1页
人教版九年级数学上册知识点及习题归纳_第2页
人教版九年级数学上册知识点及习题归纳_第3页
人教版九年级数学上册知识点及习题归纳_第4页
人教版九年级数学上册知识点及习题归纳_第5页
已阅读5页,还剩42页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、word版 初中数学word版 初中数学47/47word版 初中数学初三上知识点汇总第二十一章 一元二次方程一、一元二次方程的概念1.只含有一个未知数,并且未知数的最高次数是2的方程叫做一元二次方程2.一般形式:【注意】1.定义的隐含条件:是整式方程;只含有一个未知数; 未知数的最高次数是2。任何一个关于的一元二次方程,经过整理,都能化成一般形式。要特别注意对于关于的方程,当时,方程是一元二次方程;当且时,方程是一元一次方程。例1 :若是关于x的一元二次方程,则m的值是 。变式1:已知关于 x的方程是一元二次方程,则a= 。二、一元二次方程的解法 1.直接开平方法:方程的一边可化成含未知数的

2、代数式的平方,另一边是非负数,那么可用直接开平方法解这类方程2.配方法:(1)将方程的左边化成一个含有未知数的完全平方式,右边是一个非负数,这样,我们可根据平方根的定义,把方程两边开平方,这种解一元二次方程的方法叫做配方法(2)配方法解一元二次方程的一般步骤: 第一步:二次项系数化为1,方程两边都除以二次项的系数; 第二步:移项:将常数项移到方程的右边; 第三步:配方:方程两边都加上一次项系数一半的平方,把原方程化为的形式; 第四步:求解:若方程右边的为非负数,解可以根据平方根的定义求出方程的解 【注意】对于配方为的一元二次方程,只有当时,才可直接开平方求解;若,方程无解3.求根公式法:(1)

3、求根公式: (2)用公式法解一元二次方程的一般步骤: 第一步:把一元二次方程化为一般形式; 第二步:确定的值; 第三步:求出的值; 第四步:若,则把以及的值代入求根公式;若,则方程无解4.因式分解法:(1)当一元二次方程整理成时,如果可以因式分解,则可以选用这个方法(2)因式分解法的一般步骤: 第一步:将方程整理为一般形式; 第二步:将方程左边因式分解,得到两个一次因式的积; 第三步:令每个因式分别为零,得到两个一元一次方程; 第四步:解这两个一元一次方程,它们的解就是原一元二次方程的解 【注意】应用因式分解法解一元二次方程时,方程的右边必须是零例2:用适当的方法解下列方程:(1) (2) x

4、2-8x+15=0 x2-10 x+24=0 (4)(5)变式2:(1) (2)三、根的判别式1.一元二次方程根的判别式:2.根的判别式用来判别根的个数情况:(1)方程有两个不相等的实数根(2)方程有两个相等的实数根(3)方程没有实数根3.一元二次方程根的判别式的应用(1)不解方程,判别方程根的情况;(2)根据方程根的情况,确定方程中字母系数的值或取值范围;(3)讨论因式分解问题及方程组的解的情况例3:若关于x的方程有两个实数根,求k的取值范围及k的非负整数值。变式3:已知关于的方程,(1)当方程的一个根为1时,求的值;(2)求证:无论取何实数,该方程都有两个不相等的实数根。四、根与系数的关系

5、韦达定理1.设一元二次方程的两个根为,则两个根满足:例4:已知是方程的两根。不解方程求下列代数式的值。 (2) (3) (4)变式4:已知是方程的两根。求的值。五、一元二次方程与实际问题1.面积最大化问题2.利润最大化问题3.增长率问题4.传播问题5.动点问题例5:某个体户以元资金经商,在第一年中获得一定的利润,已知这元资金加上第一年的利润在第二年共获利润元,而且第二年的利润率比第一年多,则第一年的利润是多少元?变式5:某个体户以元资金经商,在第一年中获得一定的利润,已知这元资金加上第一年的利润在第二年共获利润元,而且第二年的利润率比第一年多,则第一年的利润是多少元?【例1】下列方程是关于的一

6、元二次方程的是( )A.B.C.D.【例2】关于的方程是一元二次方程,则的取值范围是( ) B. C.为任何实数 D.不存在【例3】关于的一元二次方程的一个根是,则的值为( )A. B. C.或D.【例4】已知,为正数,若二次方程有两个实数根,那么方程的根的情况是( )A有两个不相等的正实数根 B有两个异号的实数根C有两个不相等的负实数根 D不一定有实数根【例5】关于的一元二次方程有两个不相等的实数根,那么的取值范围是( ) B C D 【例6】若一元二次方程的常数项为零,则的值为_【例7】若是方程的一个根,那么代数式的值为 _ 【例8】若关于的二次方程有两个不相等的实数根,则的取值范围是_【

7、例9】设、是方程的两个不同的实根,且,则的值是_【例10】选择恰当的方法解下列方程(1);(2);(3)(4);(5)【例11】设方程,求满足该方程的所有根之和【例12】证明:无论实数、取何值时,方程都有实数根【例13】已知关于的方程有两个不相等的实根、,求的值【例14】某个体户以元资金经商,在第一年中获得一定的利润,已知这元资金加上第一年的利润在第二年共获利润元,而且第二年的利润率比第一年多,则第一年的利润是多少元?【例15】一台电脑被感染,经过两轮感染后就会有台电脑被感染,每轮感染中平均一台电脑感染几台电脑?若病毒得不到有效控制,轮感染后,被感染电脑会不会超过台?第二十二章 二次函数一、二

8、次函数的概念二次函数的定义1.一般地,形如(为常数,)的函数称为的二次函数,其中为自变量,为因变量,分别为二次函数的二次项、一次项和常数项系数.2.任何二次函数都可以整理成(为常数,)的形式3.判断函数是否为二次函数的方法: (1)含有一个变量,且自变量的最高次数为2; (2)二次项系数不等于0; (3)等式两边都是整式4.二次函数自变量的取值范围是全体实数二次函数图象的画法:五点绘图法利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标在对称轴两侧,左右对称地描点画图一般我们选取的五点为:顶点、与轴的交点、以及关于对称轴对称的点、与轴的交点,(若与轴没有交点,则取两组关于对称轴对

9、称的点)二、二次函数的图象性质二次函数的性质对称轴:顶点坐标:最值: 时有最小值 (如图1) 时有最大值 (如图2)单调性:二次函数()的变化情况(增减性) 当时,对称轴左侧,随着的增大而减小,在对称轴的右侧 ,随的增大而增大; 当时,对称轴左侧, 随着的增大而增大,在对称轴的右侧,随的增大而减小;二次函数的性质对称轴: 顶点坐标: 最值: 时有最小值 (如图1)时有最大值;(如图2)二次函数的性质对称轴: 与轴的交点坐标为二次函数的图象与系数的关系1.的符号决定抛物线的开口方向: 当时,抛物线开口向上; 当时,抛物线开口向下2.决定抛物线的开口大小: 越大,抛物线开口越小; 越小,抛物线开口

10、越大3.和共同决定抛物线对称轴的位置(抛物线的对称轴:) 当时,抛物线的对称轴为轴; 当、同号时,对称轴在轴的左侧; 当、异号时,对称轴在轴的右侧 简要概括为“左同右异” 4.的大小决定抛物线与轴交点的位置(抛物线与轴的交点坐标为) 当时,抛物线与轴的交点为原点; 当时,交点在轴的正半轴; 当时,交点在轴的负半轴根据二次函数的图象判断代数式符号1.决定了函数图象与轴的交点情况: 当,有两个交点; 当,有一个交点; 当,没有交点2.当时,可以得到的值; 当时,可以得到的值二次函数解析式的确定待定系数法求解析式一般式:【注意】已知任意3点坐标,可用一般式求解二次函数解析式。顶点式:【注意】1.已知

11、顶点坐标或对称轴时,可用顶点式求解二次函数解析式已知二次函数的顶点和图象上的任意一点,都可以用顶点式来确定解析式3.交点式:【注意】1、已知抛物线与的两个交点坐标,可用交点式求解二次函数解析式2、已知二次函数与轴的交点坐标,和图象上任意一点时,可用交点式求解二次函数解析式3、已知二次函数与轴的交点坐标,可知二次函数的对称轴为 4.对称式:【注意】当抛物线经过点、时,可以用对称式来求二次函数的解析式三、二次函数的几何变换平移变换 1、具体步骤:先利用配方法把二次函数化成的形式,确定其顶点,然后做出二次函数 的图象,将抛物线平移,使其顶点平移到具体平移方法如图所示:2、平移规律:在原有函数的基础上

12、“左加右减,上加下减”对称变换二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1、关于轴对称关于轴对称后,得到的解析式是;关于轴对称后,得到的解析式是;2、关于轴对称关于轴对称后,得到的解析式是;关于轴对称后,得到的解析式是;旋转变换四、二次函数与实际应用1、二次函数求最值的应用【注意】对二次函数的最大(小)值的确定,一定要注意二次函数自变量的取值范围,同时兼顾实际问题中对自变量的特殊要求,结合图像进行理解2、利用图像信息解决问题【注意】获取图像信息,如抛物线的顶点坐标,与坐标轴的交点坐标等3、建立二次函数模型解决问题【注意】构建二次函数模型时,建立适当的平面直角坐标系是关键。【例1

13、】下列说法中错误的是( )A在函数中,当时有最大值0 B在函数中,当时随的增大而增大C抛物线,中,抛物线的开口最小,抛物线的开口最大 D不论是正数还是负数,抛物线的顶点都是坐标原点【例2】函数,的_相同A.形状B顶点C最小值D增减性【例3】下列函数中,当时,值随值的增大而减小的是() A B C D【例4】已知,在同一直角坐标系中,函数与 的图象可能是( ) AB CD【例5】如图,直角坐标系中,两条抛物线有相同的对称轴,下列关系不正确的是( )AB C D【例6】如下图所示,二次函数的图象经过点,且与轴交点的横坐标分别为,其中,下列结论:;其中正确的有( )个 个 个 个【例7】函数的图象可

14、由函数的图象平移得到,那么平移的步骤是( )右移六个单位,下移五个单位 右移四个单位,上移五个单位左移六个单位,下移五个单位 左移四个单位,上移五个单位【例8】若函数为二次函数,则的值为_【例9】二次函数的顶点在轴上,则_,若顶点在轴上,则_【例10】已知二次函数的图象如图所示,给出以下结论:;其中所有正确结论的序号是_【例11】已知二次函数的图象与轴有两个交点,且顶点到轴的距离为,求此二次函数解析式【例12】已知一抛物线的形状与的形状相同它的对称轴为,它与轴的两交点之间的距离为,求此抛物线的解析式【例13】已知抛物线,求 关于轴对称的抛物线的表达式; 关于轴对称的抛物线的表达式; 关于原点对

15、称的抛物线的表达式【例14】已知关于的方程有两个实数根,且为非负整数.(1)求的值;(2)将抛物线:向右平移个单位,再向上平移个单位得到抛物线,若抛物线过点和点,求抛物线的表达式; (3)将抛物线绕点()旋转得到抛物线,求抛物线的解析式【例15】某商品的进价为每件元当售价为每件元时,每星期可卖出件,现需降价处理,且经市场调查:每降价元,每星期可多卖出件在确保盈利的前提下,解答下列问题:(1)若设每件降价元、每星期售出商品的利润为元,请写出与的函数关系式,并求出自变量的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?第二十三章 旋转旋转1.旋转的概念 在平面内,将图形绕一个定点

16、沿某个方向(逆时针或顺时针)转动一定的角度,这样的图形变换叫做旋转这个定点叫做旋转中心,转动的角称为旋转角【注意】旋转变换的三要素:旋转中心、旋转方向和旋转角2.旋转的性质(1)旋转前后的图形全等;(2)对应点到旋转中心的距离相等(意味着:即旋转中心在对应点所连线段的垂直平分线上);(3)对应点与旋转中心所连线段的夹角等于旋转角;(4)对应线段所在直线的夹角等于旋转角二、中心对称1.中心对称 把一个图形绕着某一个定点旋转,如果它能够与另外一个图形完全重合,那么就说这两个图形关于这个点对称或者中心对称,这个点叫做对称中心2.中心对称的性质 中心对称图形上的每一对对应点所连的线段都被对称中心平分3

17、.中心对称图形 在平面内,一个图形绕着某一个定点旋转,如果旋转前后的图形完全重合,那么这个图形叫做中心对称图形【注意】掌握中心对称图形需要注意以下几点: (1)中心对称图形是指一个图形; (2)中心对称图形有一个对称中心; (3)中心对称图形在绕对称中心旋转后,前后两个图形互相重合区别中心对称与中心对称图形 中心对称是指两个全等图形之间的互相位置关系,中心对称图形是指具有特殊形状的一个图形。5.确定关于某点成中心对称的两个图形的对称中心的方法:(1)连接任意一对对称点,取这条线段的中点,则该点为对称中心;(2)任意连结两对对称点,这两条线段的交点即是对称中心【例1】如图,把菱形绕点顺时针旋转得

18、到菱形,则下列角中不是旋转角的为( )A B C D 【例2】如图,是正内的一点,若将绕点旋转到,则的度数是( )ABCD【例3】如图,边长为的正方形绕点按顺时针方向旋转后得到正方形,交于点,则四边形的面积为( )ABC D【例4】在方格纸中,选择标有序号中的一个小正方形涂黑,使它与图中阴影部分组成的新图形构成中心对称图形,该小正方形的序号是( )ABCD【例5】)在下列四个黑体字母中,既是轴对称图形,又是中心对称图形的是( ) ABCD【例6】下列说法正确的是( )A平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B平移和旋转的共同点是改变图形的位置C图形可以向某方向平移一定距离,也

19、可以向某方向旋转一定距离D在平移和旋转图形中,对应角相等,对应线段相等且平行【例7】如图,直线与轴、轴分别交于、两点,绕点顺时针旋转 后得到,则点的对应点坐标为( )AB C D 【例8】如图,在中,将绕点逆时针旋转得到,则_【例9】如图,ABC中,AD是BAC内的一条射线,BEAD,且CHM可由BEM旋转而得,延长CH交AD于点F,最后再连接FM,则下列结论中正确的是( )M是BC的中点CFADFMBCA1个B2个 C3个D4个【例10】已知:如图,若线段CD是由线段AB经过旋转变换得到的求作:旋转中心O点【例11】中,已知,点D在边BC上,BD=2CD(如图)把绕点D逆时针旋m()度后,如

20、果B点恰好落在初始的边上,那么m=?【例12】已知:如图,四边形ABCD与四边形EFGH成中心对称,试画出它们的对称中心,并简要说明理由【例13】已知:三点A(1,1),B(3,2),C(4,1)(1)作出与ABC关于原点对称的A1B1C1,并写出各顶点的坐标;(2)作出与ABC关于P(1,2)点对称的A2B2C2,并写出各顶点的坐标【例14】如图,将绕顶点按顺时针方向旋转,得到,连接,若,,求的长度【例15】已知:如图1,O为正方形ABCD的中心,分别延长OA到点F,OD到点E,使OF=2OA,OE=2OD,连接EF,将FOE绕点O逆时针旋转角得到FOE(如图2)(1)探究AE与BF的数量关

21、系,并给予证明;(2)当=30时,求证AOE为直角三角形第二十四章 圆一、圆的相关概念与性质1、圆(1)描述性定义:在一个平面内,线段绕它固定的一个端点旋转一周,另一个端点随之旋转所形成的图形叫做圆,其中固定端点叫做圆心,叫做半径通常用符号表示圆,记作“”,读作“圆”(2)集合性定义:平面内到定点的距离等于定长的点的集合叫做圆,顶点叫做圆心,定长叫做半径 (3)同圆:圆心相同且半径相等的圆叫同圆;(4)同心圆:半径不相等的两个圆叫做同心圆;(5)等圆:半径相等(能够重合)的两个圆叫做等圆2、弦(1)弦:连结圆上任意两点的线段叫做弦(2)直径:经过圆心的弦叫做圆的直径,直径等于半径的倍(3)弦心

22、距:从圆心到弦的距离叫做弦心距【注意】直径是最长的弦,圆中,弦长的取值范围是:3、弧(1)弧:圆上任意两点间的部分叫做圆弧,简称弧以为端点的圆弧记作,读作弧(2)等弧:在同圆或等圆中,能够互相重合的弧叫做等弧(3)半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆(4)优弧:大于半圆的弧叫做优弧,用三个大写字母表示,如(5)劣弧:小于半圆的弧叫做劣弧,用两个大写字母表示,如(6)弓形:由弦及其所对的弧组成的图形叫做弓形【注意】一般表示的是劣弧,优弧的表示要用三个字母表示,再在圆弧上任选一个字母,例如4、圆心角圆心角:顶点在圆心,并且两边都和圆相交的角叫做圆心角【注意】圆心角的度数

23、和它所对的弧的度数相等5、圆周角圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角【注意】任意一条弧所对的圆周角有无数多个,只有一种,他们都相等任意一条弦所对的圆周角也有无数个,但是分为两种,他们互为补角6、圆的旋转对称性圆是中心对称图形,对称中心是圆心;圆是旋转对称图形,无论绕圆心旋转多少度角,总能与自身重合7、圆的轴对称性圆是轴对称图形,经过圆心的任一条直线是它的对称轴二、垂径定理定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧三、弧、弦、圆心角的关系1、弧、弦、圆心角之间的关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等 推论:在同圆或等圆中,如果两个圆心角、两条弧

24、、两条弦中有一组量相等,那么它们所对应的其余各组量分别相等【注意】因为一条弦对的弧有两条,所以由弦等得出弧等时,这里的弧等指的是弦对的劣弧与劣弧相等,优弧与优弧相等。四 、圆周角定理1、圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半【注意】在应用定理时,一定要保证“同弧或等弧”的前提。2、推论:(1)推论1:同弧或等弧所对的圆周角相等。(2)推论2:在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等(3)推论3:半圆(或直径)所对的圆周角是直角,的圆周角所对的弦是直径五、点与圆的位置关系1、设的半径为,点到圆心的距离为,则有:(1)点在圆外(2)点在圆上(

25、3)点在圆内2、不在同一直线上的三点确定一个圆圆的内接三角形1、定义:经过三角形三个顶点的圆叫做三角形的外接圆,这个三角形叫做这个圆的内接三角形2、性质(1)三角形的外心是指外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等;(2)三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合【补充】锐角三角形外接圆的圆心在它的内部;直角三角形外接圆的圆心在斜边中点处(即直角三角形外接圆半径等于斜边的一半);钝角三角形外接圆的圆心在它的外部圆的内接四边形1、定义: HYPERLINK /view/68006.htm t

26、 _blank 四边形的四个顶点均在同一个圆上的 HYPERLINK /view/68006.htm t _blank 四边形叫做圆内接四边形2、性质(1)圆内接四边形对角互补;(2)圆内接 HYPERLINK /view/68006.htm t _blank 四边形的任意一个外角等于它的 HYPERLINK /view/6854178.htm t _blank 内对角,即外角等于内对角如图:,【补充】圆的内接四边形的性质可以由同一条对角线(同一条弦)所对的两种圆周角互补得到直线和圆的位置关系 设的半径为,圆心到直线的距离为,则根据直线与圆相离、相切、相交的定义,容易得到:(1)直线与相离(2

27、)直线与相切(3)直线与相交七、切线的性质和判定 1、切线的性质(1)定理:圆的切线垂直于过切点的半径(2)推论1:经过圆心且垂直于切线的直线必经过切点(3)推论2:经过切点且垂直于切线的直线必经过圆心2、切线的判定(1)定义法:和圆只有一个公共点的直线是圆的切线;(2)距离法:和圆心距离等于半径的直线是圆的切线;(3)定理:经过半径的外端并且垂直于这条半径的直线是圆的切线八、切线长定理1、切线长的概念 在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长2、切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角九、三角形的内切圆1三

28、角形的内切圆:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形2、多边形的内切圆:和多边形的各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形三角形内切圆的半径与三边的关系(1)任意三角形设、分别为中、的对边,面积为,则内切圆半径为(2)直角三角形设、分别为中、的对边,若,则十、与弧长有关的计算1、弧长的计算:由于圆周角可看做的圆弧,而的圆心角所对的弧长就是圆周长 ,所以在半径为的圆中,的圆心角所对的弧长的计算公式:十一、与扇形有关的面积计算1、扇形的定义:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形2、扇形的周长:

29、在半径为,圆心角的度数为的扇形中,周长的公式为:3、扇形面积的计算公式:(1) (2) (为扇形的弧长) 【例1】如图所示,在中,那么( )A. B. C. D. 与的大小关系不能确定【例2】如下中图,是的直径,点在上,则 ( ) A B C D【例3】在圆柱形油槽内装有一些油截面如图所示,油面宽为6分米,如果再注入一些油后,油面上升1分米,油面宽度为8分米,圆柱形油槽直径为( )A6分米 B8分米 C10 分米 D12 分米【例4】已知矩形的边以点为圆心的圆,使三点至少有一点在内,且至少有一点在外,则的半径的取值范围是( ) A B C D【例5】如图所示,内接于,若,则的大小是( )A B

30、 C D【例6】如图,PA、PB是O的切线,A、B是切点,点C是劣弧AB上的一个动点,若P40,则ACB的度数是() A80 B110 C120 D140【例7】如图,以点为圆心的两个同心圆,半径分别为和,若大圆的弦与小圆相交,则弦长的取值范围是()A B C D【例9】如图,已知PA与圆相切于点A,过点P的割线与弦AC交于点B,与圆相交于点D、E,且PA=PB=BC,又PD=4,DE=21,则AB=_【例10】若扇形的圆心角为60,弧长为2,则扇形的半径为_【例11】如下左图,内接于,为的直径,那么_【例12】如图,以为圆心的两个同心圆中,大圆的弦是小圆的切线,点为切点,求证:【例13】如图

31、,的两个顶点在圆上,顶点在圆外,分别交圆于两点,连结若与的面积相等,试判定的形状【例14】如图所示,已知为的直径,是弦,且于点,连接,(1)求证:,(2)若,求的直径【例15】如图,半径为的内有互相垂直的两条弦相交于点(1)设的中点为,连结并延长交于,求证:;(2)若,求的长第二十五章 概率初步一、与概率有关的定义:1、必然事件:事先能肯定一定发生的事件称为必然事件.2、不可能事件:事先能肯定一定不发生的事件称为不可能事件.3、确定事件:事先能肯定它是否发生的事件称为确定事件,必然事件和不可能事件都是确定事件.4、不确定事件(随机事件):事先不能肯定它会不会发生的事件称为不确定事件.5、概率:

32、随机事件发生的可能性的大小.记为.设为事件包含的可能结果数,为所有可能结果总数,则.对于任何一个事件,它的概率满足,必然事件的概率是1,不可能事件的概率是0.7、(补充)乘法原理:若一件事情需分个步骤完成,而且每个步骤的概率分别为:,则,完成该事件的概率为:.加法原理:若一件事情需分种方法完成,而且每种方法的概率分别为:,则,完成该事件的概率为:二、求概率的方法:1、列表2、画树状图3、用频率估计概率列举法求概率如果在一次试验中,有种可能的结果,并且它们发生的可能性都相等,事件包含其中种结果,那么事件发生的概率为用树状图法求概率当一次试验涉及3个或更多因素(例如从3个口袋中取球)时,列举法就不

33、方便了,可采用树状图法表示出所有可能的结果,再根据计算概率利用频率估计概率一般地,在大量重复试验中,如果事件发生的频率稳定于某个常数,那么这个常数就叫做事件的概率,记作【例1】下列事件中必然发生的是( )A抛两枚均匀的硬币,硬币落地后,都是正面朝上B掷一枚质地均匀的骰子,朝上一面的点数是3C通常情况下,抛出的篮球会下落D阴天就一定会下雨【例2】下列成语所描述的事件是必然发生的是 () A. 水中捞月 B. 拔苗助长 C. 守株待免 D. 瓮中捉鳖【例3】下列事件中是必然事件的是( )A小菊上学一定乘坐公共汽车B某种彩票中奖率为,买10000张该种票一定会中奖C一年中,大、小月份数刚好一样多D将豆油滴入水中,豆油会浮在水面上【例4】下列事件是必然事件的是( )A抛掷一枚硬币,四次中有两次正面朝上 B.打开电视体育频道,正在播放NBA球赛C.射击运动员射击一次,命中十环 D.若a是实数,则【例5】从这十二个自然数中任取一个,取到的数恰好是倍数的概率是( )ABCD【例6】在的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,如

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论