版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1如图示,二次函数的图像与轴交于坐标原点和,若关于的方程(为实数)在的范围内有解,则的取值范围是( )ABCD2如图,抛物线yax2+bx+c交x轴分别于点A(3,0),B(1,0),交y轴正半轴于点D,抛物线顶点为C下列结论2ab0;a+b+c
2、0;当m1时,abam2+bm;当ABC是等腰直角三角形时,a;若D(0,3),则抛物线的对称轴直线x1上的动点P与B、D两点围成的PBD周长最小值为3,其中,正确的个数为()A2个B3个C4个D5个3如图,等腰直角ABC中,AB=AC=8,以AB为直径的半圆O交斜边BC于D,则阴影部分面积为(结果保留)( )A244B324C328D164在一个布袋里放有个红球,个白球和个黑球,它们除了颜色外其余都相同,从布袋中任意摸出一个球是白球的概率( )ABCD5已知,那么ab的值为( )ABCD6如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子()A逐渐变短B先变短后变
3、长C先变长后变短D逐渐变长7二位同学在研究函数(为实数,且)时,甲发现当 01时,函数图像的顶点在第四象限;乙发现方程必有两个不相等的实数根,则( )A甲、乙的结论都错误B甲的结论正确,乙的结论错误C甲、乙的结论都正确D甲的结论错误,乙的结论正确8在1、2、3三个数中任取两个,组成一个两位数,则组成的两位数是奇数的概率为( )ABCD9如图,中,将绕点逆时针旋转后得到,点经过的路径为则图中涂色部分的面积为( )ABCD10下列成语表示随机事件的是()A水中捞月 B水滴石穿 C瓮中捉鳖 D守株待兔11方程x26x+50的两个根之和为()A6B6C5D512下列关于反比例函数,结论正确的是( )A
4、图象必经过B图象在二,四象限内C在每个象限内,随的增大而减小D当时,则二、填空题(每题4分,共24分)13如图,在平面直角坐标系中,第二象限内的点P是反比例函数y(k0)图象上的一点,过点P作PAx轴于点A,点B为AO的中点若PAB的面积为3,则k的值为_14如图,在中,则的长为_15已知关于的方程的一个根为-2,则方程另一个根为_16二次函数图象的对称轴是_17如图,AB是O的直径,点C在O上,AE是O的切线,A为切点,连接BC并延长交AE于点D若AOC=80,则ADB的度数为( )A40 B50 C60 D2018将抛物线向左平移2个单位得到新的抛物线,则新抛物线的解析式是_三、解答题(共
5、78分)19(8分)如图,在平面直角坐标系中,矩形的顶点分别在轴和轴的正半轴上,顶点的坐标为(4,2),的垂直平分线分别交于点,过点的反比例函数的图像交于点(1)求反比例函数的表示式;(2)判断与的位置关系,并说明理由;(3)连接,在反比例函数图像上存在点,使,直接写出点的坐标20(8分)在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有1名男生和1名女生获得音乐奖(1)从获得美术奖和音乐奖的5名学生中选取1名参加颁奖大会,刚好是男生的概率是 ;(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率21(8分)为了配合全市“创建全
6、国文明城市”活动,某校共1200名学生参加了学校组织的创建全国文明城市知识竞赛,拟评出四名一等奖.(1)求每一位同学获得一等奖的概率;(2)学校对本次竞赛获奖情况进行了统计,其中七、八年级分别有一名同学获得一等奖,九年级有2名同学获得一等奖,现从获得一等奖的同学中任选两人参加全市决赛,请通过列表或画树状图的方法,求所选出的两人中既有七年级又有九年级同学的概率.22(10分) “2019大洋湾盐城马拉松”的赛事共有三项:A,“全程马拉松”、B,“半程马拉松”、C“迷你健身跑”,小明和小刚参与了该项赛事的志愿者服务工作,组委会随机将志愿者分配到三个项目组(1)小明被分配到“迷你健身跑”项目组的概率
7、为 ;(2)求小明和小刚被分配到不同项目组的概率23(10分)如图1,在平面直角坐标系中,点,点.(1)求直线的函数表达式;(2)点是线段上的一点,当时,求点的坐标;(3)如图2,在(2)的条件下,将线段绕点顺时针旋转,点落在点处,连结,求的面积,并直接写出点的坐标.24(10分)定义:如果一个四边形的一组对角互余,那么我们称这个四边形为“对角互余四边形”(1)如图,在对角互余四边形ABCD中,B60,且ACBC,ACAD,若BC1,则四边形ABCD的面积为 ;(2)如图,在对角互余四边形ABCD中,ABBC,BD13,ABC+ADC90,AD8,CD6,求四边形ABCD的面积;(3)如图,在
8、ABC中,BC2AB,ABC60,以AC为边在ABC异侧作ACD,且ADC30,若BD10,CD6,求ACD的面积25(12分)如图,在中, 垂足为平分,交于点,交于点.(1)若,求的长;(2)过点作的垂线,垂足为,连接,试判断四边形的形状,并说明原因.26已知一次函数(为常数,)的图象分别与轴、轴交于、B两点,且与反比例函数的图象交于、D两点(点在第二象限内,过点作轴于点(1)求的值(2)记为四边形的面积,为的面积,若,求的值参考答案一、选择题(每题4分,共48分)1、D【分析】首先将代入二次函数,求出,然后利用根的判别式和求根公式即可判定的取值范围.【详解】将代入二次函数,得方程为故答案为
9、D.【点睛】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.2、D【分析】把A、B两点坐标代入抛物线的解析式并整理即可判断;根据抛物线的顶点和最值即可判断;求出当ABC是等腰直角三角形时点C的坐标,进而可求得此时a的值,于是可判断;根据利用对称性求线段和的最小值的方法(将军饮马问题)求解即可判断.【详解】解:把A(3,0),B(1,0)代入yax2+bx+c得到,消去c得到2ab0,故正确;抛物线的对称轴是直线x1,开口向下,x1时,y有最大值,最大值ab+c,m1,ab+cam2+bm+c,abam2+bm,故正确;当ABC是等腰直角三角形时,C(1,2),可设抛物线的解析
10、式为ya(x+1)2+2,把(1,0)代入解得a,故正确,如图,连接AD交抛物线的对称轴于P,连接PB,则此时BDP的周长最小,最小值PD+PB+BDPD+PA+BDAD+BD,AD3,BD,PBD周长最小值为3,故正确故选D【点睛】本题考查了二次函数的图象与性质、二次函数的图象与其系数的关系、待定系数法求二次函数的解析式和求三角形周长最小值的问题,熟练掌握二次函数的图象与性质是解题的关键.3、A【解析】试题分析:连接AD,OD,等腰直角ABC中,ABD=45AB是圆的直径,ADB=90,ABD也是等腰直角三角形,AB=8,AD=BD=4,S阴影=SABC-SABD-S弓形AD=SABC-SA
11、BD-(S扇形AOD-SABD)=88-44-+44=16-4+8=24-4故选A考点: 扇形面积的计算4、C【分析】根据概率公式,求摸到白球的概率,即用白球除以小球总个数即可得出得到黑球的概率【详解】在一个布袋里放有个红球,个白球和个黑球,它们除了颜色外其余都相同,从布袋中任意摸出一个球是白球的概率为:故选:C【点睛】此题主要考查了概率公式的应用,由已知求出小球总个数再利用概率公式求出是解决问题的关键5、C【分析】利用平方差公式进行计算,即可得到答案.【详解】解:,;故选择:C.【点睛】本题考查了二次根式的乘法运算,解题的关键是熟练运用平方差公式进行计算.6、B【分析】小亮由A处径直路灯下,
12、他得影子由长变短,再从路灯下到B处,他的影子则由短变长【详解】晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子先变短,再变长故选B【点睛】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影如物体在灯光的照射下形成的影子就是中心投影7、D【分析】先根据函数的解析式可得顶点的横坐标,结合判断出横坐标可能取负值,从而判断甲不正确;再通过方程的根的判别式判断其根的情况,从而判断乙的说法.【详解】,原函数定为二次函数甲:顶点横坐标为,所以甲不正确乙:原方程为,化简得:必有两个不相等的实数根,所以乙正确故选:D.【点睛】本题考查二次函数图象的性质、顶点坐标、一元
13、二次方程的根的判别式,对于一般形式有:(1)当,方程有两个不相等的实数根;(2)当,方程有两个相等的实数根;(3)当,方程没有实数根.8、C【分析】列举出所有情况,看末位是1和3的情况占所有情况的多少即可【详解】依题意画树状图:共有6种情况,是奇数的有4种情况,所以组成的两位数是偶数的概率,故选:C【点睛】本题考查了树状图法求概率以及概率公式;如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A),注意本题是不放回实验9、A【分析】先根据勾股定理得到AB,再根据扇形的面积公式计算出,由旋转的性质得到RtADERtACB,于是【详解】ACB=90,AC
14、=BC=1,又RtABC绕A点逆时针旋转30后得到RtADE,RtADERtACB,故选:A【点睛】本题主要考查的是旋转的性质、扇形的面积公式,勾股定理的应用,将阴影部分的面积转化为扇形ABD的面积是解题的关键10、D【解析】根据必然事件、不可能事件、随机事件的概念进行判断即可【详解】解:水中捞月是不可能事件,故选项A不符合题意;B、水滴石穿是必然事件,故选项B不符合题意;C、瓮中捉鳖是必然事件,故选项C不符合题意;D、守株待兔是随机事件,故选项D符合题意;故选:D【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念用到的知识点为:确定事件包括必然事件和不可能事
15、件必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件11、B【分析】根据根与系数的关系得出方程的两根之和为,即可得出选项【详解】解:方程x26x+50的两个根之和为6,故选:B【点睛】本题考查了根与系数的关系,解决问题的关键是熟练正确理解题意,熟练掌握一元二次方程根与系数的关系.12、B【分析】根据反比例函数的图象和性质,逐一判断选项,即可得到答案【详解】,A错误,k=-80,即:函数的图象在二,四象限内,B正确,k=-80,即:在每个象限内,随的增大而增大,C错误,当时,则或,D错误,故选B【点睛】
16、本题主要考查反比例函数的图象和性质,掌握比例系数k的意义与增减性,是解题的关键二、填空题(每题4分,共24分)13、-1【分析】根据反比例函数系数k的几何意义得出的面积,再根据线段中点的性质可知,最后根据双曲线所在的象限即可求出k的值.【详解】如图,连接OP点B为AO的中点,的面积为3由反比例函数的几何意义得则,即又由反比例函数图象的性质可知则解得故答案为:.【点睛】本题考查了反比例函数的图象与性质、线段的中点,熟记反比例函数的性质是解题关键.14、【解析】过A作AD垂直于BC,在直角三角形ABD中,利用锐角三角函数定义求出AD的长,在直角三角形ACD中,利用锐角三角函数定义求出CD的长,再利
17、用勾股定理求出AC的长即可【详解】解:过作,在中,在中,即,根据勾股定理得:,故答案为【点睛】此题考查了解直角三角形,涉及的知识有:锐角三角函数定义,以及勾股定理,熟练掌握各自的性质是解本题的关键15、1【分析】将方程的根-2代入原方程求出m的值,再解方程即可求解【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:,解方程得:故答案为:1【点睛】本题考查的知识点是解一元二次方程,根据方程的一个解求出方程中参数的值是解此题的关键16、直线【分析】根据二次函数的顶点式直接得出对称轴【详解】二次函数图象的对称轴是x=1故答案为:直线x=1【点睛】本题考查的是根据二次函
18、数的顶点式求对称轴17、B【解析】试题分析:根据AE是O的切线,A为切点,AB是O的直径,可以先得出BAD为直角再由同弧所对的圆周角等于它所对的圆心角的一半,求出B,从而得到ADB的度数由题意得:BAD=90,B=AOC=40,ADB=90-B=50故选B考点:圆的基本性质、切线的性质18、y=5(x+2)2【分析】根据二次函数平移的性质求解即可.【详解】抛物线的平移问题, 实质上是顶点的平移,原抛物线 y=顶点坐标为(O, O), 向左平移2个单位, 顶点坐标为(-2, 0), 根据抛物线的顶点式可求平移后抛物线的解析式为y=5(x+2)2,故答案为y=5(x+2)2.【点睛】本题主要考查二
19、次函数平移的性质,有口诀“左加右减,上加下减”,注意灵活运用.三、解答题(共78分)19、(1)反比例函数表达式为;(2),证明见解析;(3)【分析】(1)求出点横坐标,也就是.由垂直平分,得到,在,,求出,从而求出.(2)方法一:通过边长关系可证,为公共角,从而,;方法二:求出直线与直线的解析式,系数相等,所以方法三: 延长交轴于点,证明,四边形是平行四边形, .(3)求出,根据,设,代入点坐标,求得,与联立,求出的坐标.【详解】(1)连接,垂直平分,设,则,四边形矩形,在中,即 解得点将点的坐标代入中,得所求反比例函数表达式为(2)方法一:将代入得,点,方法二:将代入得,点由(1)知,设直
20、线的函数表达式为,点在直线上,设直线的函数表达式为设直线的函数表达式为,点在直线上, 解得直线的函数表达式为直线与直线的值为,直线与直线平行方法三:延长交轴于点,设直线的函数表达式为,点在直线上, 解得直线的函数表达式为将代入中,得点,四边形矩形,四边形是平行四边形(3)【点睛】本题考查了反比例函数的求法,平行的性质以及两直线垂直的性质.20、(1);(2)【分析】(1)直接根据概率公式求解;(2)画树状图展示所有6种等可能的结果数,再找出刚好是一男生一女生的结果数,然后根据概率公式求解【详解】解:(1)从获得美术奖和音乐奖的5名学生中选取1名参加颁奖大会,刚好是男生的概率是 ;故答案为:;(
21、2)画树状图为:共有6种等可能的结果数,其中刚好是一男生一女生的结果数为3,概率所以刚好是一男生一女生的概率为 【点睛】本题考查了概率问题,掌握概率公式以及树状图的画法是解题的关键21、(1);(2).【分析】(1)让一等奖的学生数除以全班学生数即为所求的概率;(2)画树状图(用A、B、C分别表示七年级、八年级和九年级的学生)展示所有12种等可能的结果数,再找出所选出的两人中既有七年级又有九年级同学的结果数,然后利用概率公式求解【详解】(1)因为一共有1200名学生,每人被抽到的机会是均等的,四名一等奖,所以(每一位同学获得一等奖);(2)由题意知,获一等奖的学生中,七年级有1人,八年级有1人
22、,九年级有2人,画树状图为:(用A、B、C分别表示七年级、八年级和九年级的学生)共有12种等可能的结果数,其中所选出的两人中既有七年级又有九年级同学的结果数为4,所以所选出的两人中既有七年级又有九年级同学的概率=.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=22、(1);(2)【解析】(1)利用概率公式直接计算即可;(2)先画树状图展示所有9种等可能的结果数,再找出其中小明和小刚被分配到不同项目组的结果数,然后根据概率公式计算【详解】解:(1)共有A,B,C三项赛事,小明被分配到“迷你健身跑”项目组的概率是,故
23、答案为:;(2)画树状图为:共有9种等可能的结果数,其中小明和小刚被分配到不同项目组的结果数为6,所以小明和小刚被分配到不同项目组的概率【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率23、(1);(2);(3),.【分析】(1)利用待定系数法即可解决问题;(2)过点、分别做轴于点,轴于点,根据相似三角形的性质得出PM的长,即点P的纵坐标,代入直线解析式,从而求解;(3)过点作交的延长线于点,若求的面积,求出CH的长即可,根据旋转120,得CAH=60,解直角三角形AHC即可得出CH长
24、,从而求解,【详解】解:(1) )A(2,0),设直线AB的解析式为y=kx+b,则有 ,解得:,直线AB的解析式为(2)如图1,过点、分别做轴于点,轴于点,即PMBN.,AP:AB=2:3,=将代入解析式可得,(3)如图2,过点作交的延长线于点.中,由勾股定理得:AP= ,在中,;过点H作FEx轴,过点C作CEFE于点E,交x轴于点G,过点A作AFFE于点F,RtACH中, AH=,PMAF,AMHF,根据直角相等、两直线平行,同位角相等易证APMHAF,AP=2,AM=4,PM=2, ,即 ,解得:AF=,HF=3,AHF+CHE=AHF +FAH=90,CHE=FAH,HEC=AFH=9
25、0,HECAFH,方法同上得:CE=3,HE= ,由四边形AFEG是矩形,得AF=GE= ,AG=FH+HE,OG=OA+ FH+HE=2+3+=5+,CG=CE-EG=3-,即点. 【点睛】本题考查一次函数的综合应用、相似三角形的判定与性质、待定系数法等,解题关键是灵活运用所学知识解决问题,难度稍大24、(1)2;(2)36;(3)【分析】(1)由ACBC,ACAD,得出ACB=CAD=90,利用含30直角三角形三边的特殊关系以及勾股定理,就可以解决问题;(2)将BAD绕点B顺时针旋转到BCE,则BCEBAD,连接DE,作BHDE于H,作CGDE于G,作CFBH于F这样可以求DCE=90,则
26、可以得到DE的长,进而把四边形ABCD的面积转化为BCD和BCE的面积之和,BDE和CDE的面积容易算出来,则四边形ABCD面积可求;(3)取BC的中点E,连接AE,作CFAD于F,DGBC于G,则BE=CE=BC,证出ABE是等边三角形,得出BAE=AEB=60,AE=BE=CE,得出EAC=ECA= =30,证出BAC=BAE+EAC=90,得出AC=AB,设AB=x,则AC=x,由直角三角形的性质得出CF=3,从而DF=3,设CG=a,AF=y,证明ACFCDG,得出,求出y=,由勾股定理得出y2=(x)2-32=3x2-9,b2=62-a2=102-(2x+a)2,(2x+a)2+b2
27、=132,整理得出a=,进而得y=,得出2=3x2-9,解得x2=34-6,得出y2=()2,解得y=-3,得出AD=AF+DF=,由三角形面积即可得出答案【详解】解:(1)ACBC,ACAD,ACBCAD90,对角互余四边形ABCD中,B60,D30,在RtABC中,ACB90,B60,BC1,BAC30,AB2BC2,ACBC,在RtACD中,CAD90,D30,ADAC3,CD2AC2,SABCACBC1,SACDACAD3,S四边形ABCDSABC+SACD2,故答案为:2;(2)将BAD绕点B顺时针旋转到BCE,如图所示:则BCEBAD,连接DE,作BHDE于H,作CGDE于G,作C
28、FBH于FCFHFHGHGC90,四边形CFHG是矩形,FHCG,CFHG,BCEBAD,BEBD13,CBEABD,CEBADB,CEAD8,ABC+ADC90,DBC+CBE+BDC+CEB90,CDE+CED90,DCE90,在BDE中,根据勾股定理可得:DE10,BDBE,BHDE,EHDH5,BH12,SBEDBHDE121060,SCEDCDCE6824,BCEBAD,S四边形ABCDSBCD+SBCESBEDSCED602436;(3)取BC的中点E,连接AE,作CFAD于F,DGBC于G,如图所示:则BECEBC,BC2AB,ABBE,ABC60,ABE是等边三角形,BAEAEB60,AEBECE,EACECAAEB30,BACBAE+EAC90,ACAB,设ABx,则ACx,ADC30,CFCD3,DFCF3,设CGa,AFy,在四边形ABCD中,ABC+BCD+ADC+BAC+DAC360,DAC+BCD180,BCD+DCG180,DACDCG,AFCCGD90,ACFCDG,即,y,在RtACF中,RtCDG和RtBDG中,由勾股定理得:y2(x)2323x29,b262a2102(2x+a)2,(2x+a)2+b2=132,整理得:x2+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 心理与行为评估新教材三级
- 信访回复制度
- 中国华能人员制度
- 三支一扶入职培训课件
- 孕期胎宝发育稳定的信号
- 2025-2030中国高纯红磷行业销售模式与前景需求量预测研究报告
- 2025-2030中国永磁同步电机市场风险评估及投融资战略规划分析研究报告
- 2025-2030全球氚光源行业现状调查与销售渠道分析研究报告
- 2025至2030土壤修复技术应用现状与市场开发策略研究报告
- 2026年水口关出入境边防检查站警务辅助人员招聘备考题库及完整答案详解一套
- 急性心肌梗死后心律失常护理课件
- 产品供货方案、售后服务方案
- 十八而志梦想以行+活动设计 高三下学期成人礼主题班会
- 2023年上海华东理工大学机械与动力工程学院教师岗位招聘笔试试题及答案
- TOC供应链物流管理精益化培训教材PPT课件讲义
- 医院18类常用急救药品规格清单
- 放弃公开遴选公务员面试资格声明
- 2023-2024学年江苏省海门市小学语文五年级期末点睛提升提分卷
- GB/T 1685-2008硫化橡胶或热塑性橡胶在常温和高温下压缩应力松弛的测定
- 北京城市旅游故宫红色中国风PPT模板
- DB42T1319-2021绿色建筑设计与工程验收标准
评论
0/150
提交评论