版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1已知3x4y,则()ABCD以上都不对2如图,在同一平面直角坐标系中,反比例函数与一次函数y=kx1(k为常数,且k0)的图象可能是( )ABCD3有甲、乙、丙、丁四架机床生产一种直径为20mm圆柱形零件,从各自生产的零件中任意抽取10件进行检测,得出各自的平均直径均为20mm,每架机床生产的零件
2、的方差如表:机床型号甲乙丙丁方差mm20.0120.0200.0150.102则在这四台机床中生产的零件最稳定的是()A甲B乙C丙D丁4如图,AC,BE是O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是( )AABEBACFCABDDADE5如果 ,两点都在反比例函数的图象上,那么与的大小关系是( )ABCD6如图O的半径为5,弦心距,则弦的长是( )A4B6C8D57如图,点的坐标分别为和,抛物线的顶点在线段上运动,与轴交于两点(在的左侧),若点的横坐标的最小值为0,则点的横坐标最大值为( )A6B7C8D98如图,ABC是一张周长为18cm的三角形纸片,BC=5cm,O是它的
3、内切圆,小明用剪刀在O的右侧沿着与O相切的任意一条直线剪下AMN,则剪下的三角形的周长为( )ABCD随直线的变化而变化9下列标志图中,既是轴对称图形,又是中心对称图形的是( )ABCD10下列各式正确的是( )ABCD11如图,圆心角都是90的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连结AC、BD,则图中阴影部分的面积为()ABCD12在正方形网格中,如图放置,则( )ABCD二、填空题(每题4分,共24分)13如图,抛物线与x轴交于A、B两点,与y轴交于C点,B的圆心为B,半径是1,点P是直线AC上的动点,过点P作B的切线,切点是Q,则切线长PQ的最小值是_14如图,把小
4、圆形场地的半径增加5米得到大圆形场地,场地面积扩大了一倍.则小圆形场地的半径是_米.15将一块三角板和半圆形量角器按图中方式叠放,点、在三角板上所对应的刻度分别是、,重叠阴影部分的量角器弧所对的扇形圆心角,若用该扇形围成一个圆锥的侧面(接缝处不重叠),则该圆锥的底面半径为_16如果3a4b(a、b都不等于零),那么a+bb_17从甲、乙、丙三人中任选两人参加“青年志愿者”活动,甲被选中的概率为_18如图,O是ABC的外接圆,D是AC的中点,连结AD,BD,其中BD与AC交于点E写出图中所有与ADE相似的三角形:_三、解答题(共78分)19(8分)尺规作图: 如图,已知正方形ABCD,E在BC边
5、上,求作AE上一点P,使ABEDPA (不写过程,保留作图痕迹).20(8分)如图,已知一次函数y1ax+b的图象与x轴、y轴分别交于点D、C,与反比例函数y2的图象交于A、B两点,且点A的坐标是(1,3)、点B的坐标是(3,m)(1)求一次函数与反比例函数的解析式;(2)求C、D两点的坐标,并求AOB的面积;(3)根据图象直接写出:当x在什么取值范围时,y1y2?21(8分)如图1,在中,.(1)求边上的高的长;(2)如图2,点、分别在边、上,、在边上,当四边形是正方形时,求的长.22(10分)问题背景:如图1设P是等边ABC内一点,PA6,PB8,PC10,求APB的度数小君研究这个问题的
6、思路是:将ACP绕点A逆时针旋转60得到ABP,易证:APP是等边三角形,PBP是直角三角形,所以APBAPP+BPP150简单应用:(1)如图2,在等腰直角ABC中,ACB90P为ABC内一点,且PA5,PB3,PC2,则BPC (2)如图3,在等边ABC中,P为ABC内一点,且PA5,PB12,APB150,则PC 拓展廷伸:(3)如图4,ABCADC90,ABBC求证:BDAD+DC(4)若图4中的等腰直角ABC与RtADC在同侧如图5,若AD2,DC4,请直接写出BD的长23(10分)如图,已知l1l2,RtABC的两个顶点A,B分别在直线l1,l2上,若l2平分ABC,交AC于点D,
7、1=26,求2的度数24(10分)如图,一次函数与反比例函数的图象交于,点两点,交轴于点.(1)求、的值.(2)请根据图象直接写出不等式的解集.(3)轴上是否存在一点,使得以、三点为顶点的三角形是为腰的等腰三角形,若存在,请直接写出符合条件的点的坐标,若不存在,请说明理由.25(12分)随着中央电视台朗读者节目的播出,“朗读”为越来越多的同学所喜爱,西宁市某中学计划在全校开展“朗读”活动,为了了解同学们对这项活动的参与态度,随机对部分学生进行了一次调查,调查结果整理后,将这部分同学的态度划分为四个类别:.积极参与,.一定参与,.可以参与,.不参与.根据调查结果制作了如下不完整的统计表和统计图.
8、学生参与“朗读”的态度统计表类别人数所占百分比18204合计请你根据以上信息,解答下列问题:(1)_,_,并将条形统计图补充完整;(2)该校有1500名学生,如果“不参与”的人数不超过150人时,“朗读”活动可以顺利开展,通过计算分析这次活动能否顺利开展?(3)“朗读”活动中,九年级一班比较优秀的四名同学恰好是两男两女,从中随机选取两人在班级进行朗读示范,试用画树状图法或列表法求所选两人都是女生的概率,并列出所有等可能的结果.26如图,抛物线yx2+bx+c交x轴于A(3,0),B(4,0)两点,与y轴交于点C,连接AC,BC(1)求此抛物线的表达式;(2)求过B、C两点的直线的函数表达式;(
9、3)点P是第一象限内抛物线上的一个动点过点P作PMx轴,垂足为点M,PM交BC于点Q试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形若存在,请求出此时点P的坐标,若不存在,请说明理由;参考答案一、选择题(每题4分,共48分)1、A【分析】根据3x4y得出xy,再代入要求的式子进行计算即可【详解】3x4y,xy,;故选:A【点睛】此题考查了比例的性质,熟练掌握比例的性质即两内项之积等于两外项之积是解题的关键2、B【分析】分k0和k0两种情况,分别判断反比例函数的图象所在象限及一次函数y=-kx-1的图象经过的象限再对照四个选项即可得出结论【详解】当k0时,
10、-k0,反比例函数的图象在第一、三象限,一次函数y=kx-1的图象经过第一、三、四象限;当k0时, -k0,反比例函数的图象在第二、四象限,一次函数y=kx-1的图象经过第二、三、四象限故选:B【点睛】本题考查了反比例函数的图象与性质以及一次函数图象与性质,熟练掌握两种函数的性质并分情况讨论是解题的关键3、A【分析】根据方差的意义,找出方差最小的即可【详解】这四台机床的平均数相同,甲机床的方差是0.012,方差最小在这四台机床中生产的零件最稳定的是甲;故选:A【点睛】本题考查了方差和平均数的知识;解题的关键是熟练掌握方差的性质,从而完成求解4、B【解析】试题分析:AOA=OB=OE,所以点O为
11、ABE的外接圆圆心;BOA=OCOF,所以点不是ACF的外接圆圆心;COA=OB=OD,所以点O为ABD的外接圆圆心;DOA=OD=OE,所以点O为ADE的外接圆圆心;故选B考点:三角形外心5、C【分析】直接把点A(1,y1),B(3,y1)两点代入反比例函数中,求出y1与y1的值,再比较其大小即可【详解】解:A(1,y1),B(3,y1)两点都在反比例函数的图象上;y1y1故选:C【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键6、C【解析】分析:连接OA,在直角三角形OAC中,OC3,OA5,则可求出AC,再根据垂径定理
12、即可求出AB解:连接OA,如下图所示:在直角三角形OAC中,OA5,弦心距,AC ,又OCAB,AB=2AC=24=1故选A7、B【分析】根据待定系数法求得顶点是A时的解析式,进而即可求得顶点是B时的解析式,然后求得与x轴的交点即可求得【详解】解:点C的横坐标的最小值为0,此时抛物线的顶点为A,设此时抛物线解析式为y=a(x-1)2+1,代入(0,0)得,a+1=0,a=-1,此时抛物线解析式为y=-(x-1)2+1,抛物线的顶点在线段AB上运动,当顶点运动到B(5,4)时,点D的横坐标最大,抛物线从A移动到B后的解析式为y=-(x-5)2+4,令y=0,则0=-(x-5)2+4,解得x=1或
13、3,点D的横坐标最大值为1故选:B【点睛】本题考查了待定系数法求二次函数的解析式以及二次函数的性质,明确顶点运动到B(5,4)时,点D的横坐标最大,是解题的关键8、B【分析】如图,设E、F、G分别为O与BC、AC、MN的切点,利用切线长定理得出BC=BD+CF,DM=MG,FN=GN,AD=AF,进而可得答案【详解】设E、F、G分别为O与BC、AC、MN的切点,O是ABC的内切圆,BD=BE,CF=CE,AD=AF,BD+CF=BC,MN与O相切于G,DM=MG,FN=GN,ABC的周长为18cm,BC=5cm,AD+AF=18-BC-(BD+CF)=18-2BC=8cm,AMN的周长=AM+
14、AN+MG+GN=AM+DM+AN+FN=AD+AF=8cm,故选:B.【点睛】本题考查切线长定理,从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角;熟练掌握定理是解题关键.9、B【分析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,也是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,也不是中心
15、对称图形.故选B.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.10、B【分析】根据二次根式的性质,同类二次根式的定义,以及二次根式的除法,分别进行判断,即可得到答案.【详解】解:A、无法计算,故A错误;B、,故B正确;C、,故C错误;D、,故D错误;故选:B.【点睛】本题考查了二次根式的性质,同类二次根式的定义,解题的关键是熟练掌握二次根式的性质进行解题.11、C【详解】由图可知,将OAC顺时针旋转90后可与ODB重合,SOAC=SOBD;因此S阴影=S扇形OAB+SOBD-SOAC-S扇形OCD=S扇形OAB-S扇形OCD=(9-
16、1)=2故选C12、B【分析】依据正切函数的定义:正切函数是直角三角形中,对边与邻边的比值叫做正切由中,求解可得【详解】解:在中,则,故选:B【点睛】本题主要考查解直角三角形,解题的关键是掌握正切函数的定义二、填空题(每题4分,共24分)13、【分析】先根据解析式求出点A、B、C的坐标,求出直线AC 的解析式,设点P的坐标,根据过点P作B的切线,切点是Q得到PQ的函数关系式,求出最小值即可.【详解】令中y=0,得x1=-,x2=5,直线AC的解析式为,设P(x,),过点P作B的切线,切点是Q,BQ=1PQ2=PB2-BQ2,=(x-5)2+()2-1,=,PQ2有最小值,PQ的最小值是,故答案
17、为:,【点睛】此题考查二次函数最小值的实际应用,求动线段的最小值,需构建关于此线段的函数解析式,利用二次函数顶点坐标公式求最值,此题找到线段PQ、BQ、PB之间的关系式是解题的关键.14、【分析】根据等量关系“大圆的面积=2小圆的面积”可以列出方程【详解】设小圆的半径为xm,则大圆的半径为(x+5)m,根据题意得:(x+5)2=2x2,解得,x=5+5或x=5-5(不合题意,舍去)故答案为5+5【点睛】本题考查了由实际问题抽象出一元二次方程的知识,本题等量关系比较明显,容易列出15、1【分析】先利用弧长公式求出弧长,再利用弧长等于圆锥的底面周长求半径即可【详解】根据题意有扇形的半径为6cm,圆
18、心角设圆锥底面半径为r 故答案为:1【点睛】本题主要考查圆锥底面半径,掌握弧长公式是解题的关键16、73【解析】直接利用已知把a,b用同一未知数表示,进而计算得出答案【详解】3a4b(a、b都不等于零),设a4x,则b3x,那么a+ba=3x+4x3x=73故答案为:73【点睛】此题主要考查了比例的性质,正确表示出a,b的值是解题关键17、【分析】画出树状图求解即可.【详解】如图,一共有6中不同的选法,选中甲的情况有4种,甲被选中的概率为:.故答案为【点睛】本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图或表格,然后用符合条件的情况数m除以所有等可能发生的情况数n即可,即.18、,
19、【分析】根据两角对应相等的两个三角形相似即可判断【详解】解:,ABDDBC,DAEDBC,DAEABD,ADEADB,ADEBDA,DAEEBC,AEDBEC,AEDBEC,故答案为CBE,BDA【点睛】本题考查相似三角形的判定,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型三、解答题(共78分)19、详见解析【分析】过D点作DPAE交AE于点P,利用相似三角形的判定解答即可【详解】作图如下:解:DPAE交AE于点P,四边形ABCD是正方形APD=ABE=BAD=90,BAE+PAD=90,PAD+ADP=90,BAE=ADP,又APD=ABEDPAABE【点睛】此题考查作图
20、-相似变换,关键是根据相似三角形的判定解答20、(1)y1,y1x+4;(1)4;(3)当 x 满足 1x3 、x2时,则 y1y1【分析】(1)把点A(1,3)代入y1,求出k,得到反比例函数的解析式;再把B(3,m)代入反比例函数的解析式,求出m,得到点B的坐标,把A、B两点的坐标代入y1=ax+b,利用待定系数法求出一次函数的解析式;(1)把x=2代入一次函数解析式,求出y1=4,得到C点的坐标,把y1=2代入一次函数解析式,求出x=4,得到D点坐标,再根据SAOB=SAOD-SBOD,列式计算即可;(3)找出一次函数落在反比例函数图象上方的部分对应的自变量的取值即可【详解】解:(1)把
21、点A(1,3)代入y1,则3,即k3,故反比例函数的解析式为:y1把点B的坐标是(3,m)代入y1,得:m1,点B的坐标是(3,1)把A(1,3),B(3,1)代入y1ax+b,得,解得,故一次函数的解析式为:y1x+4; (1)令x2,则y14;令y12,则x4,C(2,4), D(4,2),SAOBSAODSBOD43414; (3)由图像可知x2、1x3时,一次函数落在反比例函数图象上方,故满足y1y1条件的自变量的取值范围: 1x3 、x2【点睛】本题考查了反比例函数与一次函数的交点问题,待定系数法求函数的解析式,函数图象上点的坐标特征,三角形的面积,难度适中利用了数形结合思想21、(
22、1)9.6;(2).【分析】(1)过点作于点,根据三线合一和勾股定理得BC上的高AM的长,再根据面积法即可解答;(2)设,则,因为可得,再根据相似三角形对应边成比例得,即,从而得解.【详解】解:(1)如图1,过点作于点.,(三线合一)在中,由勾股定理得.又(2)如图,设与交于点.四边形是正方形,.设,则由可得,从而,即解得(本题也可通过,列方程求解)【点睛】本题考查面积法求高、三角形相似的判定与性质的综合应用,是比较经典的题目.22、(1)135;(2)13;(3)见解析;(4)【分析】简单应用:(1)先利用旋转得出BPAP5,PCP90,CPCP2,再根据勾股定理得出PPCP4,最后用勾股定
23、理的逆定理得出BPP是以BP为斜边的直角三角形,即可得出结论;(2)同(1)的方法得出APP60,进而得出BPPAPBAPP90,最后用勾股定理即可得出结论;拓展廷伸:(3)先利用旋转得出BDBD,CDAD,BCDBAD,再判断出点D在DC的延长线上,最后用勾股定理即可得出结论;(4)先利用旋转得出BDBD,CDAD,DBD90,BCDBAD,再判断出点D在AD的延长线上,最后用勾股定理即可得出结论【详解】解:简单应用:(1)如图2,ABC是等腰直角三角形,ACB90,ACBC,将ACP绕点C逆时针旋转90得到CBP,连接PP,BPAP5,PCP90,CPCP2,CPPCPP45,根据勾股定理
24、得,PPCP4,BP5,BP3,PP2+BP2BP,BPP是以BP为斜边的直角三角形,BPP90,BPCBPP+CPP135,故答案为:135;(2)如图3,ABC是等边三角形,BAC60,ACAB,将ACP绕点A逆时针旋转60得到ABP,连接PP,BPCP,APAP5,PAP60,APP是等边三角形,PPAP5,APP60,APB150,BPPAPBAPP90,根据勾股定理得,BP13,CP13,故答案为:13;拓展廷伸:(3)如图4,在ABC中,ABC90,ABBC,将ABD绕点B顺时针旋转90得到BCD,BDBD,CDAD,BCDBAD,ABCADC90,BAD+BCD180,BCD+B
25、CD180,点D在DC的延长线上,DDCD+CDCD+AD,在RtDBD中,DDBD,BDCD+AD;(4)如图5,在ABC中,ABC90,ABBC,连接BD,将CBD绕点B顺时针旋转90得到ABD,BDBD,CDAD,DBD90,BCDBAD,AB与CD的交点记作G,ADCABC90,DAB+AGDBCD+BGC180,AGDBGC,BADBCD,BADBAD,点D在AD的延长线上,DDADADCDAD2,在RtBDD中,BDDD【点睛】本题主要考查了三角形的旋转变换,涉及了旋转的性质、等边三角形的判定和性质、等腰直角三角形的性质、勾股定理,灵活的利用三角形的旋转变换添加辅助线是解题的关键.
26、23、38【解析】试题分析:根据平行线的性质先求得ABD=26,再根据角平分线的定义求得ABC=52,再根据直角三角形两锐角互余即可得.试题解析:l1l2,1=26,ABD=1=26,又l2平分ABC,ABC=2ABD=52,C=90,RtABC中,2=90ABC=3824、 (1),;(2)或;(3)存在,点的坐标是或或.【分析】(1)先把点A(4,3)代入求出m的值,再把A(-2,n)代入求出n即可;(2)利用图象法即可解决问题,写出直线的图象在反比例函数的图象上方的自变量的取值范围即可;(3)先求出直线AB的解析式,然后分两种情况求解即可:当AC=AD时,当CD=CA时,其中又分为点D在
27、点C的左边和右边两种情况.【详解】解:(1)反比例函数过点点A(4,3),把代入得,;(2)由图像可知,不等式的解集为或;(3)设直线AB的解析式为y=kx+b,把A(4,3),B(-2,-6),代入得,解得,当y=0时,解得x=2,C(2,0),当AC=AD时,作AHx轴于点H,则CH=4-2=2,CD1=2CH=4,OD1=2+4=6,D1(6,0),当CD=CA时,AC=, D2(2+,0),D3(2-,0),综上可知,点的坐标是(6,0)或(2+,0)或(2-,0).【点睛】本题考查了待定系数法求反比例函数和一次函数解析式,利用函数图象解不等式,等腰三角形的性质,坐标与图形的性质,勾股定理,以及分类讨论的数学思想.熟练掌握待定系数法和分类讨论的数学思想是解答本题的关键.25、(1),8,补图详见解析;(2)这次活动能顺利开展;(3)(两人都是女生)【分析】(1)先用20除以40求出样本容量,然后求出a, m的值,并补全条形统计图即可;(2)先求出b的值,用b的值乘以1500,然后把计算的结果与150进行大小比较,则可判断这次活动能否顺利开展;(3)画树状图展示所有12种等可能的结果数,找出所选两人都是女生的结果数为2,然后根据概率公式计算【详解】解:(1)2040=50人,a=1850100%=36%,m=5016%=8, (2)b=45
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 节日文化活动策划与实施方案
- 医药企业GMP质量管理体系建设方案
- 高中英语名人传记教学设计方案
- 快递行业投诉处理及客户满意度提升方案
- 连锁餐饮店食品安全管理方案
- 养老机构跌倒风险管理方案
- 潮汕社群运营方案
- 网店具体运营推广方案
- 生蚝外卖运营方案策划
- 瓷器厂家运营方案策划书
- 2025至2030中国汽车检测行业市场深度研究与战略咨询分析报告
- 2026年南昌健康职业技术学院单招职业技能考试备考试题附答案详解
- 2026年安徽粮食工程职业学院高职单招职业适应性考试备考试题及答案详解
- 雨课堂学堂在线学堂云《中国电影经典影片鉴赏(北京师范大学)》单元测试考核答案
- 四川水利安全b证考试试题及答案
- 2626《药事管理与法规》国家开放大学期末考试题库
- 2025江西江新造船有限公司招聘70人模拟笔试试题及答案解析
- 重庆市丰都县2025届九年级上学期1月期末考试英语试卷(不含听力原文及音频答案不全)
- 2026年党支部主题党日活动方案
- 供销合同示范文本
- 《分布式光伏发电开发建设管理办法》问答(2025年版)
评论
0/150
提交评论