版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1从一个不透明的口袋中摸出红球的概率为,已知口袋中的红球是3个,则袋中共有球的个数是( )A5B8C10D152有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均
2、一个人传染了几个人?若设每轮传染中平均一个人传染了x个人,那么x满足的方程是( )ABCD3在平面直角坐标系xoy中,OAB各顶点的坐标分别为:O(0,0),A(1,2),B(3,0),以原点O为位似中心,相似比为2,将OAB放大,若B点的对应点B的坐标为(6,0),则A点的对应点A坐标为()A(2,4)B(4,2)C(1,4)D(1,4)4方程x2=x的解是()Ax=1Bx=0Cx1=1,x2=0Dx1=1,x2=05将函数的图象向左平移个单位,再向下平移个单位,可得到的抛物线是:( )ABCD6如图,将ABC绕点C顺时针方向旋转40得ACB,若ACAB,则BAC等于( )A50B60C70
3、D807如图,AB,BC是O的两条弦,AOBC,垂足为D,若O的半径为5,BC8,则AB的长为()A8B10CD8去年某校有1 500人参加中考,为了了解他们的数学成绩,从中抽取200名考生的数学成绩,其中有60名考生达到优秀,那么该校考生达到优秀的人数约有( )A400名B450名C475名D500名9用配方法解方程,下列变形正确的是( )ABCD10如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿PDQ运动,点E、F的运动速度相同设点E的运动路程为x,AEF的面积为y,能大致刻画y与x的函数关系的图象是(
4、)ABCD11如图,在中,点在边上,且,过点作,交边于点,将沿着折叠,得,与边分别交于点若的面积为,则四边形的面积是( )ABCD12二次函数y=ax1+bx+c(a0)的部分图象如图所示,图象过点(1,0),对称轴为直线x=1,下列结论:(1)4a+b=0;(1)9a+c3b;(3)7a3b+1c0;(4)若点A(3,y1)、点B(,y1)、点C(7,y3)在该函数图象上,则y1y3y1;(5)若方程a(x+1)(x5)=3的两根为x1和x1,且x1x1,则x115x1其中正确的结论有()A1个B3个C4个D5个二、填空题(每题4分,共24分)13如图,已知D是等边ABC边AB上的一点,现将
5、ABC折叠,使点C与D重合,折痕为EF,点E、F分别在AC和BC上如果AD:DB=1:2,则CE:CF的值为_14试写出一个开口方向向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式为_.15如图,将半径为2,圆心角为90的扇形BAC绕点A逆时针旋转60,点B、C的对应点分别为D、E,点D在上,则阴影部分的面积为_16二中岗十字路口南北方向的红绿灯设置为:红灯30秒,绿灯60秒,黄灯3秒,小明由南向北经过路口遇到红灯的概率为_17请写出一个位于第一、三象限的反比例函数表达式,y = 18某校棋艺社开展围棋比赛,共位学生参赛比赛为单循环制,所有参赛学生彼此恰好比赛一场记分规
6、则为:每场比赛胜者得3分,负者得0分,平局各得1分比赛结束后,若所有参赛者的得分总和为76分,且平局的场数不超过比赛场数的,则_三、解答题(共78分)19(8分)如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD求该矩形草坪BC边的长20(8分)(发现)在解一元二次方程的时候,发现有一类形如x2+(m+n)x+mn0的方程,其常数项是两个因数的积,而它的一次项系数恰好是这两个因数的和,则我们可以把它转化成x2+(m+n)x+mn(m+x)(m+n)0(探索)解方程:x2+5x+60:x2+5x+6x2+(2+3)x+23(x+2)(x+
7、3),原方程可转化为(x+2)(x+3)0,即x+20或x+30,进而可求解(归纳)若x2+px+q(x+m)(x+n),则p q ;(应用)(1)运用上述方法解方程x2+6x+80;(2)结合上述材料,并根据“两数相乘,同号得正,异号得负“,求出一元二次不等式x22x30的解21(8分)如图,已知直线与两坐标轴分别交于A、B两点,抛物线 经过点A、B,点P为直线AB上的一个动点,过P作y轴的平行线与抛物线交于C点, 抛物线与x轴另一个交点为D(1)求图中抛物线的解析式;(2)当点P在线段AB上运动时,求线段PC的长度的最大值;(3)在直线AB上是否存在点P,使得以O、A、P、C为顶点的四边形
8、是平行四边形?若存在,请求出此时点P 的坐标,若不存在,请说明理由22(10分)如图,在ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD连接BE、BF,使它们分别与AO相交于点G、H(1)求EG:BG的值;(2)求证:AG=OG;(3)设AG=a,GH=b,HO=c,求a:b:c的值23(10分)如图,二次函数的图象经过坐标原点,与轴的另一个交点为A(2,0)(1)求二次函数的解析式(2)在抛物线上是否存在一点P,使AOP的面积为3,若存在请求出点P的坐标,若不存在,请说明理由24(10分)如图,抛物线过点,交x轴于A,B两点点A在点B的左侧求抛物线的解析式,并
9、写出顶点M的坐标;连接OC,CM,求的值;若点P在抛物线的对称轴上,连接BP,CP,BM,当时,求点P的坐标25(12分)爱好数学的甲、乙两个同学做了一个数字游戏:拿出三张正面写有数字1,0,1且背面完全相同的卡片,将这三张卡片背面朝上洗匀后,甲先随机抽取一张,将所得数字作为p的值,然后将卡片放回并洗匀,乙再从这三张卡片中随机抽取一张,将所得数字作为q值,两次结果记为(1)请你帮他们用树状图或列表法表示所有可能出现的结果;(2)求满足关于x的方程没有实数根的概率26已知:在同一平面直角坐标系中,一次函数与二次函数的图象交于点.(1)求,的值;(2)求二次函数图象的对称轴和顶点坐标.参考答案一、
10、选择题(每题4分,共48分)1、D【分析】根据概率公式,即可求解.【详解】3=15(个),答:袋中共有球的个数是15个.故选D.【点睛】本题主要考查概率公式,掌握概率公式,是解题的关键.2、D【分析】先由题意列出第一轮传染后患流感的人数,再列出第二轮传染后患流感的人数,即可列出方程【详解】解:设每轮传染中平均一个人传染了x个人,则第一轮传染后患流感的人数是:1+x,第二轮传染后患流感的人数是:1+x+x(1+x),因此可列方程,1+x+x(1+x)=1故选:D【点睛】本题主要考查一元二次方程的应用,找到等量关系是解题的关键3、A【分析】根据相似比为2, B的坐标为(6,0),判断A在第三象限即
11、可解题.【详解】解:由题可知O A:OA=2:1,B的坐标为(6,0),A在第三象限,A(2,4),故选A.【点睛】本题考查了图形的位似,属于简单题,确定A的象限是解题关键.4、C【解析】试题解析:x2-x=0,x(x-1)=0,x=0或x-1=0,所以x1=0,x2=1故选C考点:解一元二次方程-因式分解法5、C【分析】先根据“左加右减”的原则求出函数y=-1x2的图象向左平移2个单位所得函数的解析式,再根据“上加下减”的原则求出所得函数图象向下平移1个单位的函数解析式【详解】解:由“左加右减”的原则可知,将函数的图象向左平移1个单位所得抛物线的解析式为:y=2(x+1)2;由“上加下减”的
12、原则可知,将函数y=2(x+1)2的图象向下平移1个单位所得抛物线的解析式为:y=2(x+1)2-1故选:C【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键6、A【解析】考点:旋转的性质分析:已知旋转角度,旋转方向,可求ACA,根据互余关系求A,根据对应角相等求BAC解:依题意旋转角ACA=40,由于ACAB,由互余关系得A=90-40=50,由对应角相等,得BAC=A=50故选A7、D【分析】根据垂径定理求出BD,根据勾股定理求出OD,求出AD,再根据勾股定理求出AB即可【详解】解:AOBC,AO过O,BC8,BDCD4,BDO90,由勾股定理得
13、:OD,ADOAOD538,在RtADB中,由勾股定理得:AB,故选D【点睛】本题考查了垂径定理和勾股定理,能根据垂径定理求出BD长是解此题的关键8、B【分析】根据已知求出该校考生的优秀率,再根据该校的总人数,即可求出答案【详解】抽取200名考生的数学成绩,其中有60名考生达到优秀,该校考生的优秀率是:100%=30%,该校达到优秀的考生约有:150030%=450(名);故选B【点睛】此题考查了用样本估计总体,关键是根据样本求出优秀率,运用了样本估计总体的思想9、D【解析】等式两边同时加上一次项系数一半的平方,利用完全平方公式进行整理即可.【详解】解:原方程等式两边同时加上一次项系数一半的平
14、方得,整理后得,故选择D.【点睛】本题考查了配方法的概念.10、A【详解】当F在PD上运动时,AEF的面积为y=AEAD=2x(0 x2),当F在DQ上运动时,AEF的面积为y=AEAF=(2x4),图象为:故选A11、B【分析】由平行线的性质可得,,可设AH=5a,HP=3a,求出SADE=,由平行线的性质可得,可得SFGM=2, 再利用S四边形DEGF= SDEM- SFGM,即可得到答案【详解】解:如图,连接AM,交DE于点H,交BC于点P,DEBC,的面积为SADE=32=设AH=5a,HP=3a沿着折叠AH=HM=5a,SADE=SDEM=PM=2a,DEBCSFGM=2S四边形DE
15、GF= SDEM- SFGM=-2=故选:B【点睛】本题考查了折叠变换,平行线的性质,相似三角形的性质,熟练运用平行线的性质是本题的关键12、B【解析】根据题意和函数的图像,可知抛物线的对称轴为直线x=-=1,即b=-4a,变形为4a+b=0,所以(1)正确;由x=-3时,y0,可得9a+3b+c0,可得9a+c-3c,故(1)正确;因为抛物线与x轴的一个交点为(-1,0)可知a-b+c=0,而由对称轴知b=-4a,可得a+4a+c=0,即c=-5a.代入可得7a3b+1c=7a+11a-5a=14a,由函数的图像开口向下,可知a0,因此7a3b+1c0,故(3)不正确;根据图像可知当x1时,
16、y随x增大而增大,当x1时,y随x增大而减小,可知若点A(3,y1)、点B(,y1)、点C(7,y3)在该函数图象上,则y1=y3y1,故(4)不正确;根据函数的对称性可知函数与x轴的另一交点坐标为(5,0),所以若方程a(x+1)(x5)=3的两根为x1和x1,且x1x1,则x11x1,故(5)正确正确的共有3个.故选B.点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax1+bx+c(a0),二次项系数a决定抛物线的开口方向和大小,当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab0),对称轴在y轴左;当a与b异
17、号时(即ab0),对称轴在y轴右;常数项c决定抛物线与y轴交点抛物线与y轴交于(0,c);抛物线与x轴交点个数由决定,=b14ac0时,抛物线与x轴有1个交点;=b14ac=0时,抛物线与x轴有1个交点;=b14ac0时,抛物线与x轴没有交点二、填空题(每题4分,共24分)13、【分析】根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出AEDBDF,进而得出对应边成比例得出比例式,将比例式变形即可得.【详解】解:如图,连接DE,DF,ABC是等边三角形,AB=BC=AC, A=B=ACB=60,由折叠可得,EDF=ACB=60,DE=CE,DF=CFBDE=BDF+F
18、DE=A+AED,BDF+60=AED+60,BDF=AED,A=B,AEDBDF, ,设AD=x,AD:DB=1:2,则BD=2x,AC=BC=3x,.故答案为: .【点睛】本题考查了折叠的性质,利用三角形相似对应边成比例及比例的性质解决问题,能发现相似三角形的模型,即“一线三等角”是解答此题的重要突破口.14、答案不唯一,如y=x24x+2,即y=(x2)21【分析】由题意得,设,此时可令 的数,然后再由与y轴的交点坐标为(0,2)求出k的值,进而可得到二次函数的解析式.【详解】解:设,将(0,2)代入,解得,故或y=x24x+2故答案为:答案不唯一,如y=x24x+2,即y=(x2)21
19、考点:1.二次函数的图象及其性质;2.开放思维.15、【分析】直接利用旋转的性质结合扇形面积求法以及等边三角形的判定与性质得出S阴影S扇形ADES弓形ADS扇形ABCS弓形AD,进而得出答案【详解】连接BD,过点B作BNAD于点N,将半径为2,圆心角为90的扇形BAC绕A点逆时针旋转60,BAD60,ABAD,ABD是等边三角形,ABD60,则ABN30,故AN1,BN,S阴影S扇形ADES弓形ADS扇形ABCS弓形AD故答案为 【点睛】考查了扇形面积求法以及等边三角形的判定与性质,正确得出ABD是等边三角形是解题关键16、【解析】该路口红灯30秒,绿灯60秒,黄灯3秒,爸爸随机地由南往北开车
20、经过该路口时遇到红灯的概率是,故答案为:.17、(答案不唯一).【详解】设反比例函数解析式为,图象位于第一、三象限,k0,可写解析式为(答案不唯一).考点:1.开放型;2.反比例函数的性质18、1【分析】设分出胜负的有x场,平局y场,根据所有参赛者的得分总和为76分,且平局的场数不超过比赛场数的列出方程与不等式,根据x,y为非负整数,得到一组解,根据m为正整数,且判断出最终的解【详解】设分出胜负的有x场,平局y场,由题意知,解得,x,y为非负整数,满足条件的解为:,此时使m为正整数的解只有,即,故答案为:1【点睛】本题考查了二元一次方程,一元一次不等式,一元二次方程的综合应用,本题注意隐含的条
21、件,参赛学生,胜利的场数,平局场数都为非负整数三、解答题(共78分)19、12米【详解】解:设BC边的长为x米,根据题意得 解得:2016,不合题意,舍去答:该矩形草坪BC边的长为12米.20、归纳:m+n,m;应用(1):x12,x24;(2)x3或x1【分析】归纳:根据题意给出的方法即可求出答案应用:(1)根据题意给出的方法即可求出答案;(2)根据题意给出的方法即可求出答案;【详解】解:归纳:故答案为:m+n,m;应用:(1)x2+6x+80,(x+2)(x+4)0 x+20,x+40 x12,x24;(2)x22x30(x3)(x+1)0或解得:x3或x1【点睛】本题考查了一元二次方程,
22、一元二次不等式的解及题目所给信息的总结归纳能力21、(1);(2)当时,线段PC有最大值是2;(3),【分析】把x=0,y=0分别代入解析式可求点A,点B坐标,由待定系数法可求解析式;设点C,可求PC,由二次函数的性质可求解;设点P的坐标为(x,x+2),则点C,分三种情况讨论,由平行四边形的性质可出点P的坐标【详解】解:(1)可求得 A(0,2 ),B(4,0 ) 抛物线经过点A和点B把(0,2),(4,0)分别代入得:解得:抛物线的解析式为. (2)设点P的坐标为(x,x+2),则C()点P在线段AB上当时,线段PC有最大值是2 (3)设点P的坐标为(x,x+2), PCx轴,点C的横坐标
23、为x,又点C在抛物线上,点C(x,)当点P在第一象限时,假设存在这样的点P,使四边形AOPC为平行四边形,则OA=PC=2,即,化简得:,解得x1=x2=2把x=2代入则点P的坐标为(2,1) 当点P在第二象限时,假设存在这样的点P,使四边形AOCP为平行四边形,则OA=PC=2,即,化简得:,解得:把,则点P的坐标为; 当点P在第四象限时,假设存在这样的点P,使四边形AOCP为平行四边形,则OA=PC=2,即,化简得:,解得:把则点P的坐标为综上,使以O、A.P、C为顶点的四边形是平行四边形,满足的点P的坐标为.【点睛】本题是二次函数综合题,考查待定系数法求函数解析式,最值问题,平行四边形的
24、性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用分类讨论的思想解决问题22、(1)1:3;(1)见解析;(3)5:3:1【分析】(1)根据平行四边形的性质可得AO=AC,AD=BC,ADBC,从而可得AEGCBG,由AE=EF=FD可得BC=3AE,然后根据相似三角形的性质,即可求出EG:BG的值;(1)根据相似三角形的性质可得GC=3AG,则有AC=4AG,从而可得AO=AC=1AG,即可得到GO=AOAG=AG;(3)根据相似三角形的性质可得AG=AC,AH=AC,结合AO=AC,即可得到a=AC,b=AC,c=AC,就可得到a:b:c的值【详解】(1)四边形ABCD是平行四边形
25、,AO=AC,AD=BC,ADBC,AEGCBG,AE=EF=FD,BC=AD=3AE,GC=3AG,GB=3EG,EG:BG=1:3;(1)GC=3AG(已证),AC=4AG,AO=AC=1AG,GO=AOAG=AG;(3)AE=EF=FD,BC=AD=3AE,AF=1AEADBC,AFHCBH,=,即AH=ACAC=4AG,a=AG=AC,b=AHAG=ACAC=AC,c=AOAH=ACAC=AC,a:b:c=:=5:3:123、(4)yx33x;(3)(4,-4),(4,-4)【分析】(4)把点(3,3)和点A(-3,3)分别代入函数关系式来求b、c的值;(3)设点P的坐标为(x,-x3-3x),利用三角形的面积公式得到-x3-3x=4通过解方程来求x的值,则易求点P的坐标【详解】解:(4)二次函数y=-x3+bx+c的图象经过坐标原点(3,3)c=3又二次函数y=-x3+bx+c的图象过点A(-3,3)-(-3)3-3b+3=3,b=-3所求b、c值分别为-3,3;(3)存在一点P,满足SAOP=4设点P的坐标为(x,-x3-3x)SAOP=43|-x3-3x|=4-x3-3x=4当-x3-3x=4时,此方程无解;当-x3-3x=-4时,解得 x4=-4,x3=4点P的坐标为(-4,-4)或(4,-4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 民航机场项目总工面试题库
- 实木复合门建设项目可行性分析报告(总投资6000万元)
- 物联网平台开发工程师面试题集
- 感应热处理机床建设项目可行性分析报告(总投资3000万元)
- 灾害预防工程师面试题及答案
- 深度解析(2026)《GBT 18866-2017橡胶 酸消化溶解法》
- 通信行业成本会计实务面试问题及答案
- 深度解析(2026)《GBT 18714.3-2003信息技术 开放分布式处理 参考模型 第3部分体系结构》
- 年产xxx低噪声风机箱项目可行性分析报告
- 数据库管理员岗位招聘面试题集
- 特色手工艺品电商营销推广策划方案
- 肿瘤内科进修汇报
- 农机操作培训知识内容课件
- 蜀风诗韵复赛题目及答案
- 2025湖北仙桃市城市发展投资集团有限公司招聘拟聘用人员笔试历年参考题库附带答案详解
- 产品管理题库及答案
- 住宅销售团队业绩提成保密及竞业限制协议书
- 高校实验室安全基础课(实验室准入教育)学习通网课章节测试答案
- (公共基础知识)河北省机关事业单位工人技能等级考试
- 2025中国商业航天行业发展研究报告
- 2025年证券公司员工绩效考核与激励方案合同
评论
0/150
提交评论