2022年黑龙江省哈尔滨道里区七校联考中考二模数学试题含解析及点睛_第1页
2022年黑龙江省哈尔滨道里区七校联考中考二模数学试题含解析及点睛_第2页
2022年黑龙江省哈尔滨道里区七校联考中考二模数学试题含解析及点睛_第3页
2022年黑龙江省哈尔滨道里区七校联考中考二模数学试题含解析及点睛_第4页
2022年黑龙江省哈尔滨道里区七校联考中考二模数学试题含解析及点睛_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(共10小题,每小题3分,共30分)1方程有两个实数根,则k的取值范围是( )Ak1

2、Bk1Ck1Dk12如图是由三个相同小正方体组成的几何体的主视图,那么这个几何体可以是()A B C D3下列图形中,可以看作中心对称图形的是( )ABCD4如图,在矩形ABCD中,AD=AB,BAD的平分线交BC于点E,DHAE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:AED=CED;OE=OD;BH=HF;BCCF=2HE;AB=HF,其中正确的有( )A2个B3个C4个D5个5如图,ABC是等腰直角三角形,A=90,BC=4,点P是ABC边上一动点,沿BAC的路径移动,过点P作PDBC于点D,设BD=x,BDP的面积为y,则下列能大致反映y与x函数关系的图象是(

3、)A B C D6下列计算正确的是( )Ax+x=x2 Bxx=2x C(x2)3=x5 Dx3x=x27下列因式分解正确的是( )ABCD8圆锥的底面半径为2,母线长为4,则它的侧面积为()A8B16C4D49如图,点A为边上任意一点,作ACBC于点C,CDAB于点D,下列用线段比表示sin的值,错误的是()ABCD10下列图形中,既是中心对称,又是轴对称的是()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11如图,点、在直线上,点,在直线上,以它们为顶点依次构造第一个正方形,第二个正方形,若的横坐标是1,则的坐标是_,第n个正方形的面积是_12计算:()0=_13如图,在R

4、tABC中,A=90,ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足若DC=2,AD=1,则BE的长为_14如图,在正方形ABCD中,O是对角线AC、BD的交点,过O点作OEOF,OE、OF分别交AB、BC于点E、点F,AE=3,FC=2,则EF的长为_15如图,在ABC中,BC=7,tanC=1,点P为AB边上一动点(点P不与点B重合),以点P为圆心,PB 为半径画圆,如果点C在圆外,那么PB的取值范围_.16小球在如图所示的地板上自由地滚动,并随机地停留在某块方砖上,那么小球最终停留在黑色区域的概率是_三、解答题(共8题,共72分)17(8分)如图,AB为O的直径,点C

5、在O上,ADCD于点D,且AC平分DAB,求证:(1)直线DC是O的切线;(2)AC2=2ADAO18(8分)的除以20与18的差,商是多少?19(8分)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜假如甲,乙两队每局获胜的机会相同若前四局双方战成2:2,那么甲队最终获胜的概率是_;现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?20(8分)如图,在平面直角坐标系中,一次函数与反比例函数的图像交于点和点,且经过点.求反比例函数和一次函数的表达式;求当时自变量的取值范围.21(8分)已知

6、:如图,在四边形ABCD中,ABCD,对角线AC、BD交于点E,点F在边AB上,连接CF交线段BE于点G,CG2=GEGD求证:ACF=ABD;连接EF,求证:EFCG=EGCB22(10分)如图,抛物线yx2+bx+c与x轴交于点A(1,0),B(4,0)与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线1,交抛物线与点Q求抛物线的解析式;当点P在线段OB上运动时,直线1交BD于点M,试探究m为何值时,四边形CQMD是平行四边形;在点P运动的过程中,坐标平面内是否存在点Q,使BDQ是以BD为直角边的直角三角形?若存在,请直接写出点Q的

7、坐标;若不存在,请说明理由23(12分)解不等式组,并把解集在数轴上表示出来24商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施经调査发现,每件商品每降价1元,商场平均每天可多售出2件若某天该商品每件降价3元,当天可获利多少元?设每件商品降价x元,则商场日销售量增加_件,每件商品,盈利_元(用含x的代数式表示);在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】当k=1时,原方程不成立,故k1,当k1时,方程为一元二次方程此方程有两个实数根,解得:k1综上k的

8、取值范围是k1故选D2、A【解析】试题分析:主视图是从正面看到的图形,只有选项A符合要求,故选A考点:简单几何体的三视图3、B【解析】根据中心对称图形的概念求解【详解】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误故选:B【点睛】此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合4、C【解析】试题分析:在矩形ABCD中,AE平分BAD,BAE=DAE=45,ABE是等腰直角三角形,AE=AB,AD=AB,AE=AD,又ABE=AHD=90ABEAHD(AAS)

9、,BE=DH,AB=BE=AH=HD,ADE=AED=(18045)=67.5,CED=1804567.5=67.5,AED=CED,故正确;AHB=(18045)=67.5,OHE=AHB(对顶角相等),OHE=AED,OE=OH,OHD=9067.5=22.5,ODH=67.545=22.5,OHD=ODH,OH=OD,OE=OD=OH,故正确;EBH=9067.5=22.5,EBH=OHD,又BE=DH,AEB=HDF=45BEHHDF(ASA),BH=HF,HE=DF,故正确;由上述、可得CD=BE、DF=EH=CE,CF=CD-DF,BC-CF=(CD+HE)-(CD-HE)=2HE

10、,所以正确;AB=AH,BAE=45,ABH不是等边三角形,ABBH,即ABHF,故错误;综上所述,结论正确的是共4个故选C【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质5、B【解析】解:过A点作AHBC于H,ABC是等腰直角三角形,B=C=45,BH=CH=AH=12BC=2,当0 x2时,如图1,B=45,PD=BD=x,y=12xx=12x2;当2x4时,如图2,C=45,PD=CD=4x,y=12(4x)x=-12x2+2x,故选B6、D【解析】分析:根据合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法的运算法则计算即可解答

11、:解:A、x+x=2x,选项错误;B、x?x=x2,选项错误;C、(x2)3=x6,选项错误;D、正确故选D7、C【解析】依据因式分解的定义以及提公因式法和公式法,即可得到正确结论【详解】解:D选项中,多项式x2-x+2在实数范围内不能因式分解;选项B,A中的等式不成立;选项C中,2x2-2=2(x2-1)=2(x+1)(x-1),正确故选C【点睛】本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法8、A【解析】解:底面半径为2,底面周长=4,侧面积=44=8,故选A9、D【解析】【分析】根据在直角三角形中,锐角的正弦为对边比斜边,可得答案【详解】BDC=90,B+BCD=90,A

12、CB=90,即BCD+ACD=90,ACD=B=,A、在RtBCD中,sin=,故A正确,不符合题意;B、在RtABC中,sin=,故B正确,不符合题意;C、在RtACD中,sin=,故C正确,不符合题意;D、在RtACD中,cos=,故D错误,符合题意,故选D【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边10、C【解析】根据中心对称图形,轴对称图形的定义进行判断【详解】A、是中心对称图形,不是轴对称图形,故本选项错误;B、不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形,又是轴对称图形,故本选项正确;

13、D、不是中心对称图形,是轴对称图形,故本选项错误故选C【点睛】本题考查了中心对称图形,轴对称图形的判断关键是根据图形自身的对称性进行判断二、填空题(本大题共6个小题,每小题3分,共18分)11、 (4,2), 【解析】由的横坐标是1,可得,利用两个函数解析式求出点、的坐标,得出的长度以及第1个正方形的面积,求出的坐标;然后再求出的坐标,得出第2个正方形的面积,求出的坐标;再求出、的坐标,得出第3个正方形的面积;从而得出规律即可得到第n个正方形的面积【详解】解:点、在直线上,的横坐标是1,点,在直线上,第1个正方形的面积为:;,第2个正方形的面积为:;,第3个正方形的面积为:;,第n个正方形的面

14、积为:故答案为,【点睛】本题考查了一次函数图象上点的坐标特征,正方形的性质以及规律型中图形的变化规律,解题的关键是找出规律本题难度适中,解决该题型题目时,根据给定的条件求出第1、2、3个正方形的边长,根据数据的变化找出变化规律是关键12、-1【解析】本题需要运用零次幂的运算法则、立方根的运算法则进行计算.【详解】由分析可得:()0=121.【点睛】熟练运用零次幂的运算法则、立方根的运算法则是本题解题的关键.13、 【解析】DE是BC的垂直平分线,DB=DC=2,BD是ABC的平分线,A=90,DEBC,DE=AD=1,BE=,故答案为 点睛:本题考查的是线段的垂直平分线的性质、角平分线的性质,

15、掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键14、 【解析】由BOFAOE,得到BE=FC=2,在直角BEF中,从而求得EF的值【详解】正方形ABCD中,OB=OC,BOC=EOF=90,EOB=FOC,在BOE和COF中,BOECOF(ASA)BE=FC=2,同理BF=AE=3,在RtBEF中,BF=3,BE=2,EF=故答案为【点睛】本题考查了正方形的性质、三角形全等的性质和判定、勾股定理,在四边形中常利用三角形全等的性质和勾股定理计算线段的长15、【解析】分析:根据题意作出合适的辅助线,然后根据题意即可求得PB的取值范围详解:作ADBC于点D,作PEBC于点E在ABC

16、 中,BC=7,AC=3,tanC=1,AD=CD=3,BD=4,AB=5,由题意可得,当PB=PC时,点C恰好在以点P为圆心,PB为半径圆上ADBC,PEBC,PEAD,BPEBDA,即,得:BP=故答案为0PB 点睛:本题考查了点与圆的位置关系、解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答16、29【解析】试题分析:根据题意和图示,可知所有的等可能性为18种,然后可知落在黑色区域的可能有4种,因此可求得小球停留在黑色区域的概率为:418=29.三、解答题(共8题,共72分)17、(1)证明见解析.(2)证明见解析.【解析】分析:(1)连接OC,由O

17、A=OC、AC平分DAB知OAC=OCA=DAC,据此知OCAD,根据ADDC即可得证;(2)连接BC,证DACCAB即可得详解:(1)如图,连接OC,OA=OC,OAC=OCA,AC平分DAB,OAC=DAC,DAC=OCA,OCAD,又ADCD,OCDC,DC是O的切线;(2)连接BC,AB为O的直径,AB=2AO,ACB=90,ADDC,ADC=ACB=90,又DAC=CAB,DACCAB,即AC2=ABAD,AB=2AO,AC2=2ADAO点睛:本题主要考查圆的切线,解题的关键是掌握切线的判定、圆周角定理及相似三角形的判定与性质18、【解析】根据题意可用乘的积除以20与18的差,所得的

18、商就是所求的数,列式解答即可【详解】解:(2018)【点睛】考查有理数的混合运算,列出式子是解题的关键.19、(1);(2)【解析】分析:(1)直接利用概率公式求解;(2)画树状图展示所有8种等可能的结果数,再找出甲至少胜一局的结果数,然后根据概率公式求详解:(1)甲队最终获胜的概率是;(2)画树状图为:共有8种等可能的结果数,其中甲至少胜一局的结果数为7,所以甲队最终获胜的概率=点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率20、 (1) ,;(2)或.【解析】(1)把点A坐标代入可

19、求出m的值即可得反比例函数解析式;把点A、点C代入可求出k、b的值,即可得一次函数解析式;(2)联立一次函数和反比例函数解析式可求出点B的坐标,根据图象,求出一次函数图象在反比例函数图象的上方时,x的取值范围即可【详解】(1)把代入得.反比例函数的表达式为把和代入得,解得一次函数的表达式为.(2)由得当或时,.【点睛】本题考查了一次函数和反比例函数的交点问题,解决问题的关键是掌握待定系数法求函数解析式求反比例函数与一次函数的交点坐标时,把两个函数关系式联立成方程组求解,若方程组有解,则两者有交点,若方程组无解,则两者无交点21、(1)证明见解析;(2)证明见解析【解析】试题分析:(1)先根据C

20、G2=GEGD得出,再由CGD=EGC可知GCDGEC,GDC=GCE根据ABCD得出ABD=BDC,故可得出结论;(2)先根据ABD=ACF,BGF=CGE得出BGFCGE,故再由FGE=BGC得出FGEBGC,进而可得出结论试题解析:(1)CG2=GEGD,又CGD=EGC,GCDGEC,GDC=GCEABCD,ABD=BDC,ACF=ABD(2)ABD=ACF,BGF=CGE,BGFCGE,又FGE=BGC,FGEBGC,FECG=EGCB考点:相似三角形的判定与性质22、 (1) ;(2) 当m2时,四边形CQMD为平行四边形;(3) Q1(8,18)、Q2(1,0)、Q3(3,2)【

21、解析】(1)直接将A(-1,0),B(4,0)代入抛物线y=x2+bx+c方程即可;(2)由(1)中的解析式得出点C的坐标C(0,-2),从而得出点D(0,2),求出直线BD:yx+2,设点M(m,m+2),Q(m,m2m2),可得MQ=m2+m+4,根据平行四边形的性质可得QM=CD=4,即m2+m+44可解得m=2;(3)由Q是以BD为直角边的直角三角形,所以分两种情况讨论,当BDQ=90时,则BD2+DQ2=BQ2,列出方程可以求出Q1(8,18),Q2(-1,0),当DBQ=90时,则BD2+BQ2=DQ2,列出方程可以求出Q3(3,-2)【详解】(1)由题意知,点A(1,0),B(4

22、,0)在抛物线yx2+bx+c上,解得:所求抛物线的解析式为 (2)由(1)知抛物线的解析式为,令x0,得y2点C的坐标为C(0,2)点D与点C关于x轴对称点D的坐标为D(0,2)设直线BD的解析式为:ykx+2且B(4,0)04k+2,解得:直线BD的解析式为:点P的坐标为(m,0),过点P作x轴的垂线1,交BD于点M,交抛物线与点Q可设点M,Q MQ四边形CQMD是平行四边形QMCD4,即=4解得:m12,m20(舍去)当m2时,四边形CQMD为平行四边形(3)由题意,可设点Q且B(4,0)、D(0,2)BQ2 DQ2 BD220当BDQ90时,则BD2+DQ2BQ2, 解得:m18,m21,此时Q1(8,18),Q2(1,0)当DBQ90时,则BD2+BQ2DQ2, 解得:m33,m44,(舍去)此时Q3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论