2021-2022学年广东普宁华侨中学高三下学期一模考试数学试题含解析_第1页
2021-2022学年广东普宁华侨中学高三下学期一模考试数学试题含解析_第2页
2021-2022学年广东普宁华侨中学高三下学期一模考试数学试题含解析_第3页
2021-2022学年广东普宁华侨中学高三下学期一模考试数学试题含解析_第4页
2021-2022学年广东普宁华侨中学高三下学期一模考试数学试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知满足,则( )ABCD2如图是国家统计局于2020年1月9日发布的2018年12月到2019年12月全国居民消费价格的涨跌幅情况折线图.(注:同比是指本期与同期作对比;

2、环比是指本期与上期作对比.如:2019年2月与2018年2月相比较称同比,2019年2月与2019年1月相比较称环比)根据该折线图,下列结论错误的是( ) A2019年12月份,全国居民消费价格环比持平B2018年12月至2019年12月全国居民消费价格环比均上涨C2018年12月至2019年12月全国居民消费价格同比均上涨D2018年11月的全国居民消费价格高于2017年12月的全国居民消费价格3已知,为两条不同直线,为三个不同平面,下列命题:若,则;若,则;若,则;若,则.其中正确命题序号为( )ABCD4在我国传统文化“五行”中,有“金、木、水、火、土”五个物质类别,在五者之间,有一种“

3、相生”的关系,具体是:金生水、水生木、木生火、火生土、土生金.从五行中任取两个,这二者具有相生关系的概率是( )A0.2B0.5C0.4D0.85若的展开式中的系数之和为,则实数的值为( )ABCD16定义在R上的偶函数f(x)满足f(x+2)f(x),当x3,2时,f(x)x2,则( )ABf(sin3)f(cos3)CDf(2020)f(2019)7已知定义在上的函数,则,的大小关系为( )ABCD8已知四棱锥,底面ABCD是边长为1的正方形,平面平面ABCD,当点C到平面ABE的距离最大时,该四棱锥的体积为( )ABCD19费马素数是法国大数学家费马命名的,形如的素数(如:)为费马索数,

4、在不超过30的正偶数中随机选取一数,则它能表示为两个不同费马素数的和的概率是()ABCD10已知平面向量,满足,且,则( )A3BCD511将函数的图像向左平移个单位得到函数的图像,则的最小值为( )ABCD12已知椭圆,直线与直线相交于点,且点在椭圆内恒成立,则椭圆的离心率取值范围为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知,求_.14在中,内角的对边分别为,已知,则的面积为_15已知,则展开式的系数为_16在三棱锥中,三角形为等边三角形,二面角的余弦值为,当三棱锥的体积最大值为时,三棱锥的外接球的表面积为_.三、解答题:共70分。解答应写出文字说明、证明过程或演

5、算步骤。17(12分)如图,在三棱柱中,为的中点,且.(1)求证:平面;(2)求锐二面角的余弦值.18(12分)已知,且的解集为.(1)求实数,的值;(2)若的图像与直线及围成的四边形的面积不小于14,求实数取值范围.19(12分)已知曲线C的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:(是参数).(1)若直线l与曲线C相交于A、B两点,且,试求实数m值.(2)设为曲线上任意一点,求的取值范围.20(12分)在平面直角坐标系中,已知直线的参数方程为(为参数),圆的方程为,以坐标原点为极点,轴正半轴为极轴建立极坐标系.(1)求和的极坐标

6、方程;(2)过且倾斜角为的直线与交于点,与交于另一点,若,求的取值范围.21(12分)已知函数(1)求单调区间和极值;(2)若存在实数,使得,求证:22(10分)已知函数.(1)若对任意x0,f(x)0恒成立,求实数a的取值范围;(2)若函数f(x)有两个不同的零点x1,x2(x1x2),证明:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】利用两角和与差的余弦公式展开计算可得结果.【详解】,.故选:A.【点睛】本题考查三角求值,涉及两角和与差的余弦公式的应用,考查计算能力,属于基础题.2D【解析】先对图表数据的分析处

7、理,再结简单的合情推理一一检验即可【详解】由折线图易知A、C正确;2019年3月份及6月份的全国居民消费价格环比是负的,所以B错误;设2018年12月份,2018年11月份,2017年12月份的全国居民消费价格分别为,由题意可知,则有,所以D正确.故选:D【点睛】此题考查了对图表数据的分析处理能力及进行简单的合情推理,属于中档题.3C【解析】根据直线与平面,平面与平面的位置关系进行判断即可.【详解】根据面面平行的性质以及判定定理可得,若,则,故正确;若,平面可能相交,故错误;若,则可能平行,故错误;由线面垂直的性质可得,正确;故选:C【点睛】本题主要考查了判断直线与平面,平面与平面的位置关系,

8、属于中档题.4B【解析】利用列举法,结合古典概型概率计算公式,计算出所求概率.【详解】从五行中任取两个,所有可能的方法为:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共种,其中由相生关系的有金水、木水、木火、火土、金土,共种,所以所求的概率为.故选:B【点睛】本小题主要考查古典概型的计算,属于基础题.5B【解析】由,进而分别求出展开式中的系数及展开式中的系数,令二者之和等于,可求出实数的值.【详解】由,则展开式中的系数为,展开式中的系数为,二者的系数之和为,得.故选:B.【点睛】本题考查二项式定理的应用,考查学生的计算求解能力,属于基础题.6B【解析】根据函数的周期性以及x3,

9、2的解析式,可作出函数f(x)在定义域上的图象,由此结合选项判断即可.【详解】由f(x+2)f(x),得f(x)是周期函数且周期为2,先作出f(x)在x3,2时的图象,然后根据周期为2依次平移,并结合f(x)是偶函数作出f(x)在R上的图象如下,选项A,所以,选项A错误;选项B,因为,所以,所以f(sin3)f(cos3),即f(sin3)f(cos3),选项B正确;选项C,所以,即,选项C错误;选项D,选项D错误.故选:B.【点睛】本题考查函数性质的综合运用,考查函数值的大小比较,考查数形结合思想,属于中档题.7D【解析】先判断函数在时的单调性,可以判断出函数是奇函数,利用奇函数的性质可以得

10、到,比较三个数的大小,然后根据函数在时的单调性,比较出三个数的大小.【详解】当时,函数在时,是增函数.因为,所以函数是奇函数,所以有,因为,函数在时,是增函数,所以,故本题选D.【点睛】本题考查了利用函数的单调性判断函数值大小问题,判断出函数的奇偶性、单调性是解题的关键.8B【解析】过点E作,垂足为H,过H作,垂足为F,连接EF.因为平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离.设,将表示成关于的函数,再求函数的最值,即可得答案.【详解】过点E作,垂足为H,过H作,垂足为F,连接EF.因为平面平面ABCD,所以平面ABCD,所以.因为底面ABCD是边长为1的正方形,所以.因

11、为平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离.易证平面平面ABE,所以点H到平面ABE的距离,即为H到EF的距离.不妨设,则,.因为,所以,所以,当时,等号成立.此时EH与ED重合,所以,.故选:B.【点睛】本题考查空间中点到面的距离的最值,考查函数与方程思想、转化与化归思想,考查空间想象能力和运算求解能力,求解时注意辅助线及面面垂直的应用.9B【解析】基本事件总数,能表示为两个不同费马素数的和只有,共有个,根据古典概型求出概率【详解】在不超过的正偶数中随机选取一数,基本事件总数能表示为两个不同费马素数的和的只有,共有个则它能表示为两个不同费马素数的和的概率是本题正确选项

12、:【点睛】本题考查概率的求法,考查列举法解决古典概型问题,是基础题10B【解析】先求出,再利用求出,再求.【详解】解:由,所以,故选:B【点睛】考查向量的数量积及向量模的运算,是基础题.11B【解析】根据三角函数的平移求出函数的解析式,结合三角函数的性质进行求解即可【详解】将函数的图象向左平移个单位,得到,此时与函数的图象重合,则,即,当时,取得最小值为,故选:【点睛】本题主要考查三角函数的图象和性质,利用三角函数的平移关系求出解析式是解决本题的关键12A【解析】先求得椭圆焦点坐标,判断出直线过椭圆的焦点.然后判断出,判断出点的轨迹方程,根据恒在椭圆内列不等式,化简后求得离心率的取值范围.【详

13、解】设是椭圆的焦点,所以.直线过点,直线过点,由于,所以,所以点的轨迹是以为直径的圆.由于点在椭圆内恒成立,所以椭圆的短轴大于,即,所以,所以双曲线的离心率,所以.故选:A【点睛】本小题主要考查直线与直线的位置关系,考查动点轨迹的判断,考查椭圆离心率的取值范围的求法,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】求出向量的坐标,然后利用向量数量积的坐标运算可计算出结果.【详解】,因此,.故答案为:.【点睛】本题考查平面向量数量积的坐标运算,考查计算能力,属于基础题.14【解析】由余弦定理先算出c,再利用面积公式计算即可.【详解】由余弦定理,得,即,解得,故的面积.故答

14、案为:【点睛】本题考查利用余弦定理求解三角形的面积,考查学生的计算能力,是一道基础题.15【解析】先根据定积分求出的值,再用二项展开式公式即可求解.【详解】因为所以的通项公式为当时,当时,故展开式中的系数为故答案为:【点睛】此题考查定积分公式,二项展开式公式等知识点,属于简单题目.16【解析】根据题意作出图象,利用三垂线定理找出二面角的平面角,再设出的长,即可求出三棱锥的高,然后利用利用基本不等式即可确定三棱锥的体积最大值,从而得出各棱的长度,最后根据球的几何性质,利用球心距,半径,底面半径之间的关系即可求出三棱锥的外接球的表面积.【详解】如图所示:过点作面,垂足为,过点作交于点,连接.则为二

15、面角的平面角的补角,即有.易证面,而三角形为等边三角形, 为的中点.设, .故三棱锥的体积为当且仅当时,即.三点共线.设三棱锥的外接球的球心为,半径为.过点作于,四边形为矩形.则,在中,解得.三棱锥的外接球的表面积为.故答案为:【点睛】本题主要考查三棱锥的外接球的表面积的求法,涉及二面角的运用,基本不等式的应用,以及球的几何性质的应用,意在考查学生的直观想象能力,数学运算能力和逻辑推理能力,属于较难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)证明见解析;(2).【解析】(1)证明后可得平面,从而得,结合已知得线面垂直;(2)以为坐标原点,以为轴,为轴,为建立空间

16、直角坐标系,设,写出各点坐标,求出二面角的面的法向量,由法向量夹角的余弦值得二面角的余弦值【详解】(1)证明:因为,为中点,所以,又,所以平面,又平面,所以,又,所以平面.(2)由已知及(1)可知,两两垂直,所以以为坐标原点,以为轴,为轴,为建立空间直角坐标系,设,则,.设平面的法向量,则,即,令,则;设平面的法向量,则,即,令,则,所以.故锐二面角的余弦值为.【点睛】本题考查证明线面垂直,解题时注意线面垂直与线线垂直的相互转化考查求二面角,求空间角一般是建立空间直角坐标系,用向量法易得结论18(1),;(2)【解析】(1)解绝对值不等式得,根据不等式的解集为列出方程组,解出即可;(2)求出的

17、图像与直线及交点的坐标,通过分割法将四边形的面积分为两个三角形,列出不等式,解不等式即可.【详解】(1)由得:,即,解得,.(2)的图像与直线及围成的四边形,.过点向引垂线,垂足为,则.化简得:,(舍)或.故的取值范围为.【点睛】本题主要考查了绝对值不等式的求法,以及绝对值不等式在几何中的应用,属于中档题.19(1)或;(2).【解析】(1)将曲线的极坐标方程化为直角坐标方程,在直角坐标条件下求出曲线的圆心坐标和半径,将直线的参数方程化为普通方程,由勾股定理列出等式可求的值;(2)将圆化为参数方程形式,代入由三角公式化简可求其取值范围【详解】(1)曲线C的极坐标方程是化为直角坐标方程为:直线的

18、直角坐标方程为:圆心到直线l的距离(弦心距)圆心到直线的距离为 :或(2)曲线的方程可化为,其参数方程为:为曲线上任意一点,的取值范围是20(1);(2)【解析】(1)直接利用转换公式,把参数方程,直角坐标方程与极坐标方程进行转化;(2)利用极坐标方程将转化为三角函数求解即可.【详解】(1)因为,所以的普通方程为,又,的极坐标方程为,的方程即为,对应极坐标方程为.(2)由己知设,则,所以,又,当,即时,取得最小值;当,即时,取得最大值.所以,的取值范围为.【点睛】本题主要考查了直角坐标方程,参数方程与极坐标方程的互化,三角函数的值域求解等知识,考查了学生的运算求解能力.21(1)时,函数单调递增,函数单调递减,;(2)见解析【解析】(1)求出函数的定义域与导函数,利用导数求函数的单调区间,即可得到函数的极值;(2)易得且,要证明,即证,即证,即对恒成立,构造函数,利用导数研究函数的单调性与最值,即可得证;【详解】解:(1)因为定义域为,所以,时,即在和上单调递增,当时,即函数在单调递减,所以在处取得极小值,在处取得极大值;,;(2)易得,要证明,即证,即证即证对恒成立,令,则令,解得,即在上单调递增;令,解得,即在上单调递减;则在取得极小值,也就是最小值, 从而结论得证.【点睛】本题考查利用导数研究函数的单

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论