2021-2022学年山东省锦泽技工学校高考数学押题试卷含解析_第1页
2021-2022学年山东省锦泽技工学校高考数学押题试卷含解析_第2页
2021-2022学年山东省锦泽技工学校高考数学押题试卷含解析_第3页
2021-2022学年山东省锦泽技工学校高考数学押题试卷含解析_第4页
2021-2022学年山东省锦泽技工学校高考数学押题试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知a,b是两条不同的直线,是两个不同的平面,且,则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件2下列四个结论中正确的个数是(1)对于命题使得,则都有;(2)已知,则 (3)已知回归直线的斜率的估计值是2

2、,样本点的中心为(4,5),则回归直线方程为;(4)“”是“”的充分不必要条件.A1B2C3D43已知集合,将集合的所有元素从小到大一次排列构成一个新数列,则( )A1194B1695C311D10954设集合,则( )ABCD5已知是函数图象上的一点,过作圆的两条切线,切点分别为,则的最小值为( )ABC0D6已知函数的图象与直线的相邻交点间的距离为,若定义,则函数,在区间内的图象是( )ABCD7若将函数的图象上各点横坐标缩短到原来的(纵坐标不变)得到函数的图象,则下列说法正确的是()A函数在上单调递增B函数的周期是C函数的图象关于点对称D函数在上最大值是18已知数列是公差为的等差数列,且

3、成等比数列,则( )A4B3C2D19在函数:;中,最小正周期为的所有函数为( )ABCD10如图所示,网格纸上小正方形的边长为1,粗线画出的是由一个棱柱挖去一个棱锥后的几何体的三视图,则该几何体的体积为A72B64C48D3211已知,则的最小值为( )ABCD12赵爽是我国古代数学家、天文学家,大约公元222年,赵爽为周髀算经一书作序时,介绍了“勾股圆方图”,又称“赵爽弦图”(以弦为边长得到的正方形是由个全等的直角三角形再加上中间的一个小正方形组成的,如图(1),类比“赵爽弦图”,可类似地构造如图(2)所示的图形,它是由个全等的三角形与中间的一个小正六边形组成的一个大正六边形,设,若在大正

4、六边形中随机取一点,则此点取自小正六边形的概率为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13的展开式中的系数为_.14若关于的不等式在上恒成立,则的最大值为_15记复数za+bi(i为虚数单位)的共轭复数为,已知z2+i,则_16已知复数(为虚数单位),则的共轭复数是_,_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设函数.()讨论函数的单调性;()如果对所有的0,都有,求的最小值;()已知数列中,且,若数列的前n项和为,求证:.18(12分)在中,角A,B,C的对边分别是a,b,c,且向量与向量共线.(1)求B;(2)若,且,求BD的长度

5、.19(12分)联合国粮农组织对某地区最近10年的粮食需求量部分统计数据如下表:年份20102012201420162018需求量(万吨)236246257276286(1)由所给数据可知,年需求量与年份之间具有线性相关关系,我们以“年份2014”为横坐标,“需求量”为纵坐标,请完成如下数据处理表格:年份20140需求量2570(2)根据回归直线方程分析,2020年联合国粮农组织计划向该地区投放粮食300万吨,问是否能够满足该地区的粮食需求?参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为: ,.20(12分)已知椭圆的左右焦点分别是,点在椭圆上,满足(1)求椭圆的标准方程;

6、(2)直线过点,且与椭圆只有一个公共点,直线与的倾斜角互补,且与椭圆交于异于点的两点,与直线交于点(介于两点之间),是否存在直线,使得直线,的斜率按某种排序能构成等比数列?若能,求出的方程,若不能,请说理由.21(12分)某生物硏究小组准备探究某地区蜻蜓的翼长分布规律,据统计该地区蜻蜓有两种,且这两种的个体数量大致相等,记种蜻蜓和种蜻蜓的翼长(单位:)分别为随机变量,其中服从正态分布,服从正态分布.()从该地区的蜻蜓中随机捕捉一只,求这只蜻蜓的翼长在区间的概率;()记该地区蜻蜓的翼长为随机变量,若用正态分布来近似描述的分布,请你根据()中的结果,求参数和的值(精确到0.1);()在()的条件下

7、,从该地区的蜻蜓中随机捕捉3只,记这3只中翼长在区间的个数为,求的分布列及数学期望(分布列写出计算表达式即可).注:若,则,.22(10分)已知各项均不相等的等差数列的前项和为, 且成等比数列.(1)求数列的通项公式;(2)求数列的前项和.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】根据线面平行的性质定理和判定定理判断与的关系即可得到答案.【详解】若,根据线面平行的性质定理,可得;若,根据线面平行的判定定理,可得.故选:C.【点睛】本题主要考查了线面平行的性质定理和判定定理,属于基础题.2C【解析】由题意,(1)中,

8、根据全称命题与存在性命题的关系,即可判定是正确的;(2)中,根据正态分布曲线的性质,即可判定是正确的;(3)中,由回归直线方程的性质和直线的点斜式方程,即可判定是正确;(4)中,基本不等式和充要条件的判定方法,即可判定【详解】由题意,(1)中,根据全称命题与存在性命题的关系,可知命题使得,则都有,是错误的;(2)中,已知,正态分布曲线的性质,可知其对称轴的方程为,所以 是正确的;(3)中,回归直线的斜率的估计值是2,样本点的中心为(4,5),由回归直线方程的性质和直线的点斜式方程,可得回归直线方程为是正确;(4)中,当时,可得成立,当时,只需满足,所以“”是“”成立的充分不必要条件【点睛】本题

9、主要考查了命题的真假判定及应用,其中解答中熟记含有量词的否定、正态分布曲线的性质、回归直线方程的性质,以及基本不等式的应用等知识点的应用,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题3D【解析】确定中前35项里两个数列中的项数,数列中第35项为70,这时可通过比较确定中有多少项可以插入这35项里面即可得,然后可求和【详解】时,所以数列的前35项和中,有三项3,9,27,有32项,所以故选:D【点睛】本题考查数列分组求和,掌握等差数列和等比数列前项和公式是解题基础解题关键是确定数列的前35项中有多少项是中的,又有多少项是中的4C【解析】解对数不等式求得集合,由此求得两个集

10、合的交集.【详解】由,解得,故.依题意,所以.故选:C【点睛】本小题主要考查对数不等式的解法,考查集合交集的概念和运算,属于基础题.5C【解析】先画出函数图像和圆,可知,若设,则,所以,而要求的最小值,只要取得最大值,若设圆的圆心为,则,所以只要取得最小值,若设,则,然后构造函数,利用导数求其最小值即可.【详解】记圆的圆心为,设,则,设,记,则,令,因为在上单调递增,且,所以当时,;当时,则在上单调递减,在上单调递增,所以,即,所以(当时等号成立).故选:C【点睛】此题考查的是两个向量的数量积的最小值,利用了导数求解,考查了转化思想和运算能力,属于难题.6A【解析】由题知,利用求出,再根据题给

11、定义,化简求出的解析式,结合正弦函数和正切函数图象判断,即可得出答案.【详解】根据题意,的图象与直线的相邻交点间的距离为,所以 的周期为, 则, 所以,由正弦函数和正切函数图象可知正确.故选:A.【点睛】本题考查三角函数中正切函数的周期和图象,以及正弦函数的图象,解题关键是对新定义的理解.7A【解析】根据三角函数伸缩变换特点可得到解析式;利用整体对应的方式可判断出在上单调递增,正确;关于点对称,错误;根据正弦型函数最小正周期的求解可知错误;根据正弦型函数在区间内值域的求解可判断出最大值无法取得,错误.【详解】将横坐标缩短到原来的得:当时,在上单调递增 在上单调递增,正确;的最小正周期为: 不是

12、的周期,错误;当时,关于点对称,错误;当时, 此时没有最大值,错误.本题正确选项:【点睛】本题考查正弦型函数的性质,涉及到三角函数的伸缩变换、正弦型函数周期性、单调性和对称性、正弦型函数在一段区间内的值域的求解;关键是能够灵活应用整体对应的方式,通过正弦函数的图象来判断出所求函数的性质.8A【解析】根据等差数列和等比数列公式直接计算得到答案.【详解】由成等比数列得,即,已知,解得.故选:.【点睛】本题考查了等差数列,等比数列的基本量的计算,意在考查学生的计算能力.9A【解析】逐一考查所给的函数: ,该函数为偶函数,周期 ;将函数 图象x轴下方的图象向上翻折即可得到 的图象,该函数的周期为 ;函

13、数的最小正周期为 ;函数的最小正周期为 ;综上可得最小正周期为的所有函数为.本题选择A选项.点睛:求三角函数式的最小正周期时,要尽可能地化为只含一个三角函数的式子,否则很容易出现错误一般地,经过恒等变形成“yAsin(x),yAcos(x),yAtan(x)”的形式,再利用周期公式即可10B【解析】由三视图可知该几何体是一个底面边长为4的正方形,高为5的正四棱柱,挖去一个底面边长为4,高为3的正四棱锥,利用体积公式,即可求解。【详解】由题意,几何体的三视图可知该几何体是一个底面边长为4的正方形,高为5的正四棱柱,挖去一个底面边长为4,高为3的正四棱锥,所以几何体的体积为,故选B。【点睛】本题考

14、查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线。求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解。11B【解析】 ,选B12D【解析】设,则,小正六边形的边长为,利用余弦定理可得大正六边形的边长为,再利用面积之比可得结论.【详解】由题意,设,则,即小正六边形的边长为,所以,在中,由余弦定理得,即,解得,所以,大正六边形的边长为,所以,小正六边形的面积为,大正六边形的面积为,所以,此点取自小正六边形的概

15、率.故选:D.【点睛】本题考查概率的求法,考查余弦定理、几何概型等基础知识,考查运算求解能力,属于基础题二、填空题:本题共4小题,每小题5分,共20分。1328【解析】将已知式转化为,则的展开式中的系数中的系数,根据二项式展开式可求得其值.【详解】,所以的展开式中的系数就是中的系数,而中的系数为,展开式中的系数为故答案为:28.【点睛】本题考查二项式展开式中的某特定项的系数,关键在于将原表达式化简将三项的幂的形式转化为可求的二项式的形式,属于基础题.14【解析】分类讨论,时不合题意;时求导,求出函数的单调区间,得到在上的最小值,利用不等式恒成立转化为函数最小值,化简得,构造放缩函数对自变量再研

16、究,可解,【详解】令;当时,不合题意;当时,令,得或,所以在区间和上单调递减.因为,且在区间上单调递增,所以在处取极小值,即最小值为.若,则,即.当时,当时,则.设,则.当时,;当时,所以在上单调递增;在上单调递减,所以,即,所以的最大值为.故答案为: 【点睛】本题考查不等式恒成立问题. 不等式恒成立问题的求解思路:已知不等式(为实参数)对任意的恒成立,求参数的取值范围利用导数解决此类问题可以运用分离参数法; 如果无法分离参数,可以考虑对参数或自变量进行分类讨论求解,如果是二次不等式恒成立的问题,可以考虑二次项系数与判别式的方法(,或,)求解1534i【解析】计算得到z2(2+i)23+4i,

17、再计算得到答案.【详解】z2+i,z2(2+i)23+4i,则故答案为:34i【点睛】本题考查了复数的运算,共轭复数,意在考查学生的计算能力.16 【解析】直接利用复数的乘法运算化简,从而得到复数的共轭复数和的模【详解】,则复数的共轭复数为,且.故答案为:;.【点睛】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础的计算题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17()函数在上单调递减,在单调递增;();()证明见解析【解析】()先求出函数f(x)的导数,通过解关于导数的不等式,从而求出函数的单调区间;()设g(x)f(x)ax,先求出函数g(x)的导数,通

18、过讨论a的范围,得到函数的单调性,从而求出a的最小值;()先求出数列是以为首项,1为公差的等差数列,问题转化为证明:,通过换元法或数学归纳法进行证明即可【详解】解:() f(x)的定义域为(1,+),当时,f(x)2,当时,f(x)2,所以函数f(x)在上单调递减,在单调递增()设,则,因为x2,故,()当a1时,1a2,g(x)2,所以g(x)在2,+)单调递减,而g(2)2,所以对所有的x2,g(x)2,即f(x)ax;()当1a1时,21a1,若,则g(x)2,g(x)单调递增,而g(2)2,所以当时,g(x)2,即f(x)ax;()当a1时,1a1,g(x)2,所以g(x)在2,+)单

19、调递增,而g(2)2,所以对所有的x2,g(x)2,即f(x)ax;综上,a的最小值为1()由(1an+1)(1+an)1得,anan+1anan+1,由a11得,an2,所以,数列是以为首项,1为公差的等差数列,故,由()知a1时,x2,即,x2法一:令,得,即因为,所以,故法二:下面用数学归纳法证明(1)当n1时,令x1代入,即得,不等式成立(1)假设nk(kN*,k1)时,不等式成立,即,则nk+1时,令代入,得,即:,由(1)(1)可知不等式对任何nN*都成立故考点:1利用导数研究函数的单调性;1、利用导数研究函数的最值; 3、数列的通项公式;4、数列的前项和;5、不等式的证明18(1

20、)(2)【解析】(1)根据共线得到,利用正弦定理化简得到答案.(2)根据余弦定理得到,再利用余弦定理计算得到答案.【详解】(1)与共线,.即,即,.(2),在中,由余弦定理得:,.则或(舍去).,.在中,由余弦定理得:,.【点睛】本题考查了向量共线,正弦定理,余弦定理,意在考查学生的综合应用能力.19(1)见解析;(2)能够满足.【解析】(1)根据表中数据,结合以“年份2014”为横坐标,“需求量”为纵坐标的要求即可完成表格;(2)根据表中及所给公式可求得线性回归方程,由线性回归方程预测2020年的粮食需求量,即可作出判断.【详解】(1)由所给数据和已知条件,对数据处理表格如下:年份2014024需求量25701929(2)由题意可知,变量与之间具有线性相关关系,由(1)中表格可得,.由上述计算结果可知,所求回归直线方程为,利用回归直线方程,可预测2020年的粮食需求量为:(万吨),因为,故能够满足该地区的粮食需求.【点睛】本题考查了线性回归直线的求法及预测应用,属于基础题.20(1);(2)不能,理由见解析【解析】(1)设,则,由此即可求出椭圆方程;(2)设直线的方程为,联立直线与椭圆的方程可求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论