2021-2022学年江苏省常州市14校联盟高三第一次模拟考试数学试卷含解析_第1页
2021-2022学年江苏省常州市14校联盟高三第一次模拟考试数学试卷含解析_第2页
2021-2022学年江苏省常州市14校联盟高三第一次模拟考试数学试卷含解析_第3页
2021-2022学年江苏省常州市14校联盟高三第一次模拟考试数学试卷含解析_第4页
2021-2022学年江苏省常州市14校联盟高三第一次模拟考试数学试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1为双曲线的左焦点,过点的直线与圆交于、两点,(在、之间)与双曲线在第一象限的交点为,为坐标原点

2、,若,且,则双曲线的离心率为( )ABCD2已知集合,则为( )A0,2)B(2,3C2,3D(0,23已知定义在上的奇函数满足,且当时,则( )A1B-1C2D-24甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试结果以后甲说:丙被录用了;乙说:甲被录用了;丙说:我没被录用.若这三人中仅有一人说法错误,则下列结论正确的是( )A丙被录用了B乙被录用了C甲被录用了D无法确定谁被录用了5如图,在中,是上一点,若,则实数的值为( )ABCD6抛物线的焦点为,准线为,是抛物线上的两个动点,且满足,设线段的中点在上的投影为,则的最大值是( )ABCD7已知函数的最小正周期为的图象

3、向左平移个单位长度后关于轴对称,则的单调递增区间为( )ABCD8若函数在时取得最小值,则( )ABCD9已知抛物线经过点,焦点为,则直线的斜率为( )ABCD10在中,D为的中点,E为上靠近点B的三等分点,且,相交于点P,则( )ABCD11的二项展开式中,的系数是( )A70B-70C28D-2812已知定义在上的偶函数满足,且在区间上是减函数,令,则的大小关系为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知,椭圆的方程为,双曲线方程为,与的离心率之积为,则的渐近线方程为_.14直线是曲线的一条切线为自然对数的底数),则实数_.15的展开式中,项的系数是_16如图所

4、示,在边长为4的正方形纸片中,与相交于.剪去,将剩余部分沿,折叠,使、重合,则以、为顶点的四面体的外接球的体积为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某工厂生产某种电子产品,每件产品不合格的概率均为,现工厂为提高产品声誉,要求在交付用户前每件产品都通过合格检验,已知该工厂的检验仪器一次最多可检验件该产品,且每 件产品检验合格与否相互独立若每件产品均检验一次,所需检验费用较多,该工厂提出以下检 验方案:将产品每个一组进行分组检验,如果某一组产品检验合格,则说明该组内产品均合格,若检验不合格,则说明该组内有不合格产品,再对该组内每一件产品单独进行检验,如此

5、,每一组产品只需检验次或次设该工厂生产件该产品,记每件产品的平均检验次 数为 (1)求的分布列及其期望;(2)(i)试说明,当越小时,该方案越合理,即所需平均检验次数越少;(ii)当时,求使该方案最合理时的值及件该产品的平均检验次数18(12分)已知矩阵,且二阶矩阵M满足AMB,求M的特征值及属于各特征值的一个特征向量.19(12分)已知,函数(1)若,求的单调递增区间;(2)若,求的值20(12分)已知()过点,且当时,函数取得最大值1.(1)将函数的图象向右平移个单位得到函数,求函数的表达式;(2)在(1)的条件下,函数,求在上的值域.21(12分)已知椭圆C:()的左、右焦点分别为,离心

6、率为,且过点.(1)求椭圆C的方程;(2)过左焦点的直线l与椭圆C交于不同的A,B两点,若,求直线l的斜率k.22(10分)近年来,随着“雾霾”天出现的越来越频繁,很多人为了自己的健康,外出时选择戴口罩,在一项对人们雾霾天外出时是否戴口罩的调查中,共调查了人,其中女性人,男性人,并根据统计数据画出等高条形图如图所示:(1)利用图形判断性别与雾霾天外出戴口罩是否有关系并说明理由;(2)根据统计数据建立一个列联表;(3)能否在犯错误的概率不超过的前提下认为性别与雾霾天外出戴口罩的关系.附:参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

7、1D【解析】过点作,可得出点为的中点,由可求得的值,可计算出的值,进而可得出,结合可知点为的中点,可得出,利用勾股定理求得(为双曲线的右焦点),再利用双曲线的定义可求得该双曲线的离心率的值.【详解】如下图所示,过点作,设该双曲线的右焦点为,连接.,., ,为的中点,由双曲线的定义得,即,因此,该双曲线的离心率为.故选:D.【点睛】本题考查双曲线离心率的求解,解题时要充分分析图形的形状,考查推理能力与计算能力,属于中等题.2B【解析】先求出,得到,再结合集合交集的运算,即可求解.【详解】由题意,集合,所以,则,所以.故选:B.【点睛】本题主要考查了集合的混合运算,其中解答中熟记集合的交集、补集的

8、定义及运算是解答的关键,着重考查了计算能力,属于基础题.3B【解析】根据f(x)是R上的奇函数,并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期为4,而由x0,1时,f(x)=2x-m及f(x)是奇函数,即可得出f(0)=1-m=0,从而求得m=1,这样便可得出f(2019)=f(-1)=-f(1)=-1【详解】是定义在R上的奇函数,且;的周期为4;时,;由奇函数性质可得;时,;.故选:B.【点睛】本题考查利用函数的奇偶性和周期性求值,此类问题一般根据条件先推导出周期,利用函数的周期变换来求解,考查理解能力和计算能力,属于中等题.4C【解析】假设若甲被录用了,若

9、乙被录用了,若丙被录用了,再逐一判断即可.【详解】解:若甲被录用了,则甲的说法错误,乙,丙的说法正确,满足题意,若乙被录用了,则甲、乙的说法错误,丙的说法正确,不符合题意,若丙被录用了,则乙、丙的说法错误,甲的说法正确,不符合题意,综上可得甲被录用了,故选:C.【点睛】本题考查了逻辑推理能力,属基础题.5C【解析】由题意,可根据向量运算法则得到(1m),从而由向量分解的唯一性得出关于t的方程,求出t的值.【详解】由题意及图,又,所以,(1m),又t,所以,解得m,t,故选C【点睛】本题考查平面向量基本定理,根据分解的唯一性得到所求参数的方程是解答本题的关键,本题属于基础题.6B【解析】试题分析

10、:设在直线上的投影分别是,则,又是中点,所以,则,在中,所以,即,所以,故选B考点:抛物线的性质【名师点晴】在直线与抛物线的位置关系问题中,涉及到抛物线上的点到焦点的距离,焦点弦长,抛物线上的点到准线(或与准线平行的直线)的距离时,常常考虑用抛物线的定义进行问题的转化象本题弦的中点到准线的距离首先等于两点到准线距离之和的一半,然后转化为两点到焦点的距离,从而与弦长之间可通过余弦定理建立关系7D【解析】先由函数的周期和图象的平移后的函数的图象性质得出函数的解析式,从而得出的解析式,再根据正弦函数的单调递增区间得出函数的单调递增区间,可得选项.【详解】因为函数的最小正周期是,所以,即,所以,的图象

11、向左平移个单位长度后得到的函数解析式为,由于其图象关于轴对称,所以,又,所以,所以,所以, 因为的递增区间是:,由,得:,所以函数的单调递增区间为().故选:D.【点睛】本题主要考查正弦型函数的周期性,对称性,单调性,图象的平移,在进行图象的平移时,注意自变量的系数,属于中档题.8D【解析】利用辅助角公式化简的解析式,再根据正弦函数的最值,求得在函数取得最小值时的值【详解】解:,其中,故当,即时,函数取最小值,所以,故选:D【点睛】本题主要考查辅助角公式,正弦函数的最值的应用,属于基础题9A【解析】先求出,再求焦点坐标,最后求的斜率【详解】解:抛物线经过点,故选:A【点睛】考查抛物线的基础知识

12、及斜率的运算公式,基础题.10B【解析】设,则,由B,P,D三点共线,C,P,E三点共线,可知,,解得即可得出结果.【详解】设,则,因为B,P,D三点共线,C,P,E三点共线,所以,所以,.故选:B.【点睛】本题考查了平面向量基本定理和向量共线定理的简单应用,属于基础题.11A【解析】试题分析:由题意得,二项展开式的通项为,令,所以的系数是,故选A考点:二项式定理的应用12C【解析】可设,根据在上为偶函数及便可得到:,可设,且,根据在上是减函数便可得出,从而得出在上单调递增,再根据对数的运算得到、的大小关系,从而得到的大小关系.【详解】解:因为,即,又,设,根据条件,;若,且,则:;在上是减函

13、数;在上是增函数;所以,故选:C【点睛】考查偶函数的定义,减函数及增函数的定义,根据单调性定义判断一个函数单调性的方法和过程:设,通过条件比较与,函数的单调性的应用,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】求出椭圆与双曲线的离心率,根据离心率之积的关系,然后推出关系,即可求解双曲线的渐近线方程.【详解】,椭圆的方程为,的离心率为:,双曲线方程为,的离心率:,与的离心率之积为, 的渐近线方程为:,即.故答案为:【点睛】本题考查了椭圆、双曲线的几何性质,掌握椭圆、双曲线的离心率公式,属于基础题.14【解析】根据切线的斜率为,利用导数列方程,由此求得切点的坐标,进而求

14、得切线方程,通过对比系数求得的值.【详解】,则,所以切点为,故切线为,即,故.故答案为:【点睛】本小题主要考查利用导数求解曲线的切线方程有关问题,属于基础题.15240【解析】利用二项式展开式的通项公式,令x的指数等于3,计算展开式中含有项的系数即可.【详解】由题意得:,只需,可得,代回原式可得,故答案:240.【点睛】本题主要考查二项式展开式的通项公式及简单应用,相对不难.16【解析】将三棱锥置入正方体中,利用正方体体对角线为三棱锥外接球的直径即可得到答案.【详解】由已知,将三棱锥置入正方体中,如图所示,故正方体体对角线长为,所以外接球半径为,其体积为.故答案为:.【点睛】本题考查三棱锥外接

15、球的体积问题,一般在处理特殊几何体的外接球问题时,要考虑是否能将其置入正(长)方体中,是一道中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)见解析,(2)(i)见解析(ii)时平均检验次数最少,约为594次【解析】(1)由题意可得,的可能取值为和,分别求出其概率即可求出分布列,进而可求出期望.(2)(i)由记,根据函数的单调性即可证出;记,当且取最小值时,该方案最合理,对进行赋值即可求解.【详解】(1)由题,的可能取值为 和,故的分布列为由记,因为,所以 在上单调递增 ,故越小,越小,即所需平均检验次数越少,该方案越合理记当且取最小值时,该方案最合理,因为,所以

16、时平均检验次数最少,约为次【点睛】本题考查了离散型随机变量的分布列、数学期望,考查了分析问题、解决问题的能力,属于中档题.18特征值为1,特征向量为【解析】设出矩阵M结合矩阵运算和矩阵相等的条件可求矩阵M,然后利用可求特征值的另一个特征向量.【详解】设矩阵M,则AM,所以,解得,所以M,则矩阵M的特征方程为,解得,即特征值为1,设特征值的特征向量为,则,即,解得x0,所以属于特征值的的一个特征向量为【点睛】本题主要考查矩阵的运算及特征量的求解,矩阵运算的关键是明确其运算规则,侧重考查数学运算的核心素养.19(1);(2).【解析】(1)利用三角恒等变换思想化简函数的解析式为,然后解不等式,可得

17、出函数的单调递增区间;(2)由得出,并求出的值,利用两角差的正弦公式可求出的值.【详解】(1)当时,由,得,因此,函数的单调递增区间为;(2),【点睛】本题主要考查三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键,属中等题20 (1);(2).【解析】试题分析:(1)由题意可得函数f(x)的解析式为,则.(2)整理函数h(x)的解析式可得:,结合函数的定义域可得函数的值域为.试题解析:(1)由函数取得最大值1,可得,函数过得,.(2) ,值域为.21(1)(2)直线l的斜率为或【解析】(1)根据已知列出方程组即可解得椭圆方程;(2)设直线方程,与椭圆方程联立, 转化为,借助向量的数量积的坐标表示,及韦达定理即可求得结果.【详解】(1)由题意得解得故椭圆C的方程为.(2)直线l的方程为,设,则由方程组消去y得,所以,由,得,所以,又所以,即所以,因此,直线l的斜率为或.【点睛】本题考查椭圆的标准方程,考查直线和椭圆的位置关系,考查学生的计算求解能力,难度一般.22(1)图形见解析,理由见解析;(2)见解析;(3)犯错误的概率不超过的前提下认为性别与雾霾天外出戴口罩有关系【解析】(1)利用等高条形图中两个深颜色条的高比较得出性别

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论