2022-2023学年广东省揭阳市锡中学校高二数学文测试题含解析_第1页
2022-2023学年广东省揭阳市锡中学校高二数学文测试题含解析_第2页
免费预览已结束,剩余4页可下载查看

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年广东省揭阳市锡中学校高二数学文测试题含解析一、 选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1. 在球心同侧有相距的两个平行截面,它们的面积分别为和,则球的表面积为 A B C D参考答案:C略2. 如图,长方形的长度为4cm,宽度为2cm,向这个长方形投一块小石头落在阴影部分的概率( )(A) (B) (C) (D) 参考答案:C3. 在等差数列an中,若,则n=( )A. 38B. 20C. 10D. 9参考答案:C【分析】由,可得,得到,再根据等差数列的求和公式,得到,代入即可求解,得到答案【详解】由题意,等差数

2、列中,可得,又解得,又由,即,解得,故选C【点睛】本题主要考查了等差数列的性质,以及等差数列的求和公式的应用,其中解答中熟记等差数列的性质,求得和是解答本题的关键,着重考查了推理与运算能力,属于基础题4. 直线(t为参数)的倾斜角是 ( )A.200 B.700 C.1100 D.1600参考答案:A5. 下图是选修1-2第二章“推理与证明”的知识结构图,如果要加入“综合法”,则应该放在( ) A“合情推理”的下位 B“演绎推理”的下位 C“直接证明”的下位 D“间接证明”的下位参考答案:C6. 曲线:在点处的切线恰好经过坐标原点,则曲线直线,轴围成的图形面积为( )A B C D参考答案:D

3、设,则曲线:在点处的切线为,因为切线恰好经过坐标原点,所以,所以切线为,所以曲线直线,轴围成的图形面积为。7. 已知函数,则下列关于该函数图象对称性的描述正确的是( )A. 关于点对称B. 关于点对称C. 关于直线对称D. 关于直线对称参考答案:D【分析】令即可解出对称轴的方程,从而得到C错误,D正确. 令可得对称中心的横坐标,从而可判断A、B是错误的.【详解】令,其中,所以,当时,故的图像关于直线对称,因为无整数解,故直线不是函数图像的对称轴.令,其中,所以,因为无整数解,故点不是函数图像的对称中心,同理也不是函数图像的对称中心.故选D.【点睛】本题考查三角函数的图像和性质,属于基础题.8.

4、 若双曲线=1的焦点为F1(5,0),F2(5,0),则双曲线的渐近线方程为()A3x4y=0B4x3y=0C4x5y=0D5x4y=0参考答案:B【考点】双曲线的简单性质【分析】依题意,9+b2=25,b0,从而可求得b,于是可求该双曲线的渐近线方程【解答】解:双曲线=1(b0)的焦点为F1(5,0),F2(5,0),9+b2=25,又b0,b=4,该双曲线的渐近线方程为y=x,整理得:4x3y=0故选:B9. 设则此函数在区间内为 ( )A单调递增, B.有增有减 C.单调递减, D.不确定参考答案:C10. 对于三次函数,给出定义:设是函数的导数,是函数的导数,若方程有实数解,则称点为函

5、数的“拐点”.某同学经过探究发现:任何一个一元三次函数都有“拐点”;且该“拐点”也为该函数的对称中心.若,则( )A. 1 B. 2012 C. 2013 D. 2014参考答案:C略二、 填空题:本大题共7小题,每小题4分,共28分11. 已知直线与抛物线,则“”是“直线与抛物线有两个不同交点”的 条件.参考答案:直线与抛物线有两个不同交点方程组 有两组不同的实数解方程有两个不同的实根且,故填必要而不充分条件.12. 已知(2x+)n的展开式中二项式系数之和为128,则展开式中x的系数为 (用数字作答)参考答案:280【考点】二项式系数的性质【分析】2n=128,解得n=7利用二项式定理的通

6、项公式即可得出【解答】解:2n=128,解得n=7Tr+1=(2x)7r=27r,令7r=1,解得r=4T5=23x=280 x故答案为:28013. 宋元时期数学名著算学启蒙中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等如图是源于其思想的一个程序框图,若输入的a,b分别为5和2,则输出的n= 参考答案:4【考点】EF:程序框图【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案【解答】解:模拟程序的运行,可得a=5,b=2,n=1a=,b=4不满足条件ab,执行循环体,n

7、=2,a=,b=8不满足条件ab,执行循环体,n=3,a=,b=16不满足条件ab,执行循环体,n=4,a=,b=32满足条件ab,退出循环,输出n的值为4故答案为:4【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题14. 把数列的所有项按照从大到小,左大右小的原则写成如图所示的数表,第行有个数,第行的第个数(从左数起)记为,则可记为_。参考答案:(10,495)15. 如图所示,在正方体中,M、N分别是棱AB、的中点,的顶点P在棱CC1与棱C1D1上运动,有以下四个命题:平面;平面平面;在底面ABCD上的射影图形的面积为定值;在侧面上的射影图

8、形是三角形.其中正确命题的序号是 . 参考答案:略16. 已知函数,则f (4) =_.参考答案:3略17. 正三棱锥V-ABC中, VB=,BC=2,则二面角V-AB-C的大小为_参考答案:60 三、 解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18. 在平面直角坐标系xOy中,四边形ABCD为矩形,A(1,0),B(2,0),C(2,),又A1(1,0)点M在直线CD上,点N在直线BC上,且=, =(R)(1)求直线AM与A1N的交点Q的轨迹S的方程;(2)过点P(1,1)能否作一条直线l,与曲线S交于E、F两点,且点P是线段EF的中点参考答案:【考点】轨迹方程

9、【分析】(1)由题意M(,),N(2,),求出直线AM、直线A1N的方程,消去参数,即可求直线AM与A1N的交点Q的轨迹S的方程;(2)设点A(x1,y1),点B(x2,y2),得到2x12y12=2 ,2x22y22=2 然后,并结合有关中点坐标公式求解【解答】解:(1)由题意M(,),N(2,),直线AM的方程为y0=(x1),直线A1N的方程为y0=(x+1),两式相乘可得y2=2(x21),即x2=1;(2)设E(x1,y1),F(x2,y2),直线的斜率为k,则2x12y12=2 2x22y22=2 得2(x1+x2)(x1x2)(y1+y2)(y1y2)=0,222k=0,k=2,

10、y1=2(x1),直线l的方程为2xy1=0,y=2x1,代入x2=1,整理可得x22x+2=0,0,直线l不存在19. 设函数f(x)=lnx,g(x)=ax+,函数f(x)的图象与x轴的交点也在函数g(x)的图象上,且在此点有公切线()求a、b的值;()试比较f(x)与g(x)的大小参考答案:【考点】6E:利用导数求闭区间上函数的最值;6H:利用导数研究曲线上某点切线方程【分析】()首先求出函数f(x)的图象与x轴的交点坐标(1,0),代入函数g(x)后得到关于a,b的等式,再由两函数在(1,0)处由公切线,得到关于a,b的另一等式,两式联立即可求得a,b的值;()令辅助函数F(x)=f(

11、x)g(x),把函数f(x)和g(x)的解析式代入,整理后求出其导函数,由导函数可知F(x)在定义域(0,+)内是减函数,然后分0 x1,x=1,x1进行大小比较【解答】解:()由f(x)=lnx=0,得x=1,所以函数f(x)=lnx的图象与x轴的交点坐标是(1,0),依题意,得g(1)=a+b=0 又,f(x)与g(x)在点(1,0)处有公切线,g(1)=f(1)=1,即ab=1 由、得a=,; ()令F(x)=f(x)g(x),则,函数F(x)的定义域为(0,+)0,函数F(x)在(0,+)上为减函数当0 x1时,F(x)F(1)=0,即f(x)g(x);当x=1时,F(x)=F(1)=

12、0,即f(x)=g(x);当x1时,F(x)F(1)=0,即f(x)g(x)综上可知,当0 x1时,f(x)g(x);当x1时,f(x)g(x)20. 已知(a2+1)n(a0)展开式中各项系数之和等于(x2+)5展开式的常数项(1)求n值;(2)若(a2+1)n展开式的系数最大的项等于54,求a值参考答案:【考点】二项式系数的性质;二项式定理【分析】(1)先求出二项式展开式的通项公式,再令x的幂指数等于0,求得r的值,即可求得展开式中的常数项的值(2)根据(a2+1)n =(a2+1)4 展开式的系数最大的项等于a4=54,求得a的值【解答】解:(1)由于(x2+)5展开式的通项公式为Tr+

13、1=?x102r?=?,令10=0,解得 r=4,故展开式的常数项为5=16由题意可得 2n=16,故有n=4(2)由于(a2+1)n =(a2+1)4 展开式的系数最大的项等于a4=54,a2=3,解得 a=21. 已知f(x)=ax3+bx2+cx(a0)在x=1处取得极值,且f(1)=1()求常数a,b,c的值;()求f(x)的极值参考答案:【考点】5D:函数模型的选择与应用【分析】()求出原函数的导函数,由函数x=1处取得极值,且f(1)=1,得到f(1)=f(1)=0,f(1)=1,代入x值后联立方程组求解a,b,c的值;()由()中求得的a,b,c得到函数f(x)的具体解析式,求出

14、导函数后解得导函数的零点,由导函数的零点对定义域分段,判断出导函数在各段内的符号,得到原函数的单调性,从而得到极值点,并求出极值【解答】解:()由f(x)=ax3+bx2+cx,得f(x)=3ax2+2bx+c,由已知有f(1)=f(1)=0,f(1)=1,即: ?,解得:;()由()知,当x1时,或x1时,f(x)0,当1x1时,f(x)0f(x)在(,1)和(1,+)内分别为增函数;在(1,1)内是减函数因此,当x=1时,函数f(x)取得极大值f(1)=1;当x=1时,函数f(x)取得极小值f(1)=1【点评】本题考查了函数模型的选择及应用,考查了利用导数求函数的极值,训练了方程组的解法,是中档题22. 如图,在正方体ABCDA1B1C1D1中,(1)证明:BC1面A1B1CD;(2)求直线A1B和平面A1B1CD所成的角参考答案:【考点】直线与平面所成的角;直线与平面垂直的判定 【分析】(1)要证BC1面A1B1CD;应通过证明A1B1BC1BC1B1C两个关系来实现,两关系容易证明(2)因为BC1平面A1B1CD,所以A1O为斜线A1B在平面A1B1CD内的射影,所以BA1O为A1B与平面A1B1CD所成的角在RTA1BO中求解即可【解答】解:(1)连接B1C交BC1于点O,连接A1O在正方体ABCDA1B1C1D1中因为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论