陕西省长安区第一中学2023学年高三第一次调研测试数学试卷(含解析)_第1页
陕西省长安区第一中学2023学年高三第一次调研测试数学试卷(含解析)_第2页
陕西省长安区第一中学2023学年高三第一次调研测试数学试卷(含解析)_第3页
陕西省长安区第一中学2023学年高三第一次调研测试数学试卷(含解析)_第4页
陕西省长安区第一中学2023学年高三第一次调研测试数学试卷(含解析)_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若复数(为虚数单位)的实部与虚部相等,则的值为( )ABCD2已知ab0,c1,则下列各式成立的是()AsinasinbBcacbCacbcD3设向量,满足,则的取值范围是ABCD4已知

2、抛物线的焦点为,为抛物线上一点,当周长最小时,所在直线的斜率为( )ABCD5已知非零向量、,若且,则向量在向量方向上的投影为( )ABCD6设集合A=4,5,7,9,B=3,4,7,8,9,全集U=AB,则集合中的元素共有 ( )A3个B4个C5个D6个7周易是我国古代典籍,用“卦”描述了天地世间万象变化如图是一个八卦图,包含乾、坤、震、巽、坎、离、艮、兑八卦(每一卦由三个爻组成,其中“”表示一个阳爻,“”表示一个阴爻)若从八卦中任取两卦,这两卦的六个爻中恰有两个阳爻的概率为( )ABCD8已知函数若存在实数,且,使得,则实数a的取值范围为( )ABCD9已知向量,若,则实数的值为( )AB

3、CD10执行如图所示的程序框图,若输入,则输出的值为( )A0B1CD11已知数列为等差数列,为其前项和,则( )A7B14C28D8412下图为一个正四面体的侧面展开图,为的中点,则在原正四面体中,直线与直线所成角的余弦值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13设是公差不为0的等差数列的前n项和,且,则_.14已知的展开式中第项与第项的二项式系数相等,则_.15(5分)在长方体中,已知棱长,体对角线,两异面直线与所成的角为,则该长方体的表面积是_16设,若关于的方程有实数解,则实数的取值范围_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12

4、分)在直角坐标系中,圆的参数方程为:(为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,且长度单位相同.(1)求圆的极坐标方程;(2)若直线:(为参数)被圆截得的弦长为,求直线的倾斜角.18(12分)已知抛物线E:y22px(p0),焦点F到准线的距离为3,抛物线E上的两个动点A(x1,y1)和B(x2,y2),其中x1x2且x1+x21线段AB的垂直平分线与x轴交于点 C(1)求抛物线E的方程;(2)求ABC面积的最大值19(12分)已知函数.(1)若在上是减函数,求实数的最大值;(2)若,求证:.20(12分)已知函数,若的解集为(1)求的值;(2)若正实数,满足,求证:21(1

5、2分)设,函数,其中为自然对数的底数.(1)设函数.若,试判断函数与的图像在区间上是否有交点;求证:对任意的,直线都不是的切线;(2)设函数,试判断函数是否存在极小值,若存在,求出的取值范围;若不存在,请说明理由.22(10分)已知数列是公比为正数的等比数列,其前项和为,满足,且成等差数列.(1)求的通项公式;(2)若数列满足,求的值.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】利用复数的除法,以及复数的基本概念求解即可.【题目详解】,又的实部与虚部相等,解得.故选:C【答案

6、点睛】本题主要考查复数的除法运算,复数的概念运用.2、B【答案解析】根据函数单调性逐项判断即可【题目详解】对A,由正弦函数的单调性知sina与sinb大小不确定,故错误;对B,因为ycx为增函数,且ab,所以cacb,正确对C,因为yxc为增函数,故 ,错误;对D, 因为在为减函数,故 ,错误故选B【答案点睛】本题考查了不等式的基本性质以及指数函数的单调性,属基础题3、B【答案解析】由模长公式求解即可.【题目详解】,当时取等号,所以本题答案为B.【答案点睛】本题考查向量的数量积,考查模长公式,准确计算是关键,是基础题.4、A【答案解析】本道题绘图发现三角形周长最小时A,P位于同一水平线上,计算

7、点P的坐标,计算斜率,即可【题目详解】结合题意,绘制图像要计算三角形PAF周长最小值,即计算PA+PF最小值,结合抛物线性质可知,PF=PN,所以,故当点P运动到M点处,三角形周长最小,故此时M的坐标为,所以斜率为,故选A【答案点睛】本道题考查了抛物线的基本性质,难度中等5、D【答案解析】设非零向量与的夹角为,在等式两边平方,求出的值,进而可求得向量在向量方向上的投影为,即可得解.【题目详解】,由得,整理得,解得,因此,向量在向量方向上的投影为.故选:D.【答案点睛】本题考查向量投影的计算,同时也考查利用向量的模计算向量的夹角,考查计算能力,属于基础题.6、A【答案解析】试题分析:,所以,即集

8、合中共有3个元素,故选A考点:集合的运算7、C【答案解析】分类讨论,仅有一个阳爻的有坎、艮、震三卦,从中取两卦;从仅有两个阳爻的有巽、离、兑三卦中取一个,再取没有阳爻的坤卦,计算满足条件的种数,利用古典概型即得解.【题目详解】由图可知,仅有一个阳爻的有坎、艮、震三卦,从中取两卦满足条件,其种数是;仅有两个阳爻的有巽、离、兑三卦,没有阳爻的是坤卦,此时取两卦满足条件的种数是,于是所求的概率故选:C【答案点睛】本题考查了古典概型的应用,考查了学生综合分析,分类讨论,数学运算的能力,属于基础题.8、D【答案解析】首先对函数求导,利用导数的符号分析函数的单调性和函数的极值,根据题意,列出参数所满足的不

9、等关系,求得结果.【题目详解】,令,得,其单调性及极值情况如下:x0+0_0+极大值极小值若存在,使得,则(如图1)或(如图2)(图1)(图2)于是可得,故选:D.【答案点睛】该题考查的是有关根据函数值的关系求参数的取值范围的问题,涉及到的知识点有利用导数研究函数的单调性与极值,画出图象数形结合,属于较难题目.9、D【答案解析】由两向量垂直可得,整理后可知,将已知条件代入后即可求出实数的值.【题目详解】解:,即,将和代入,得出,所以.故选:D.【答案点睛】本题考查了向量的数量积,考查了向量的坐标运算.对于向量问题,若已知垂直,通常可得到两个向量的数量积为0,继而结合条件进行化简、整理.10、A

10、【答案解析】根据输入的值大小关系,代入程序框图即可求解.【题目详解】输入,因为,所以由程序框图知,输出的值为.故选:A【答案点睛】本题考查了对数式大小比较,条件程序框图的简单应用,属于基础题.11、D【答案解析】利用等差数列的通项公式,可求解得到,利用求和公式和等差中项的性质,即得解【题目详解】,解得故选:D【答案点睛】本题考查了等差数列的通项公式、求和公式和等差中项,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.12、C【答案解析】将正四面体的展开图还原为空间几何体,三点重合,记作,取中点,连接,即为与直线所成的角,表示出三角形的三条边长,用余弦定理即可求得.【题目详解】将展开的

11、正四面体折叠,可得原正四面体如下图所示,其中三点重合,记作:则为中点,取中点,连接,设正四面体的棱长均为,由中位线定理可得且,所以即为与直线所成的角, ,由余弦定理可得,所以直线与直线所成角的余弦值为,故选:C.【答案点睛】本题考查了空间几何体中异面直线的夹角,将展开图折叠成空间几何体,余弦定理解三角形的应用,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、18【答案解析】将已知已知转化为的形式,化简后求得,利用等差数列前公式化简,由此求得表达式的值.【题目详解】因为,所以.故填:.【答案点睛】本题考查等差数列基本量的计算,考查等差数列的性质以及求和,考查运算求解能力,属于基

12、础题.14、【答案解析】根据的展开式中第项与第项的二项式系数相等,得到,再利用组合数公式求解.【题目详解】因为的展开式中第项与第项的二项式系数相等,所以,即 ,所以,即 ,解得.故答案为:10【答案点睛】本题主要考查二项式的系数,还考查了运算求解的能力,属于基础题.15、10【答案解析】作出长方体如图所示,由于,则就是异面直线与所成的角,且,在等腰直角三角形中,由,得,又,则,从而长方体的表面积为 16、【答案解析】先求出,从而得函数在区间上为增函数;在区间为减函数即可得的最大值为,令,得函数取得最小值,由有实数解,进而得实数的取值范围【题目详解】解:,当时,;当时,;函数在区间上为增函数;在

13、区间为减函数所以的最大值为,令,所以当时,函数取得最小值,又因为方程有实数解,那么,即,所以实数的取值范围是:故答案为:【答案点睛】本题考查了函数的单调性,函数的最值问题,导数的应用,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或【答案解析】(1)消去参数可得圆的直角坐标方程,再根据,即可得极坐标方程;(2)写出直线的极坐标方程为,代入圆的极坐标方程,根据极坐标的意义列出等式解出即可.【题目详解】(1)圆:,消去参数得:,即:,.,.(2)直线:的极坐标方程为,当时.即:,或.或,直线的倾斜角为或.【答案点睛】本题主要考查了参数方程化为普通方程

14、,直角坐标方程化为极坐标方程以及极坐标的几何意义,属于中档题.18、(1)y26x(2)【答案解析】(1)根据抛物线定义,写出焦点坐标和准线方程,列方程即可得解;(2)根据中点坐标表示出|AB|和点到直线的距离,得出面积,利用均值不等式求解最大值.【题目详解】(1)抛物线E:y22px(p0),焦点F(,0)到准线x的距离为3,可得p3,即有抛物线方程为y26x;(2)设线段AB的中点为M(x0,y0),则,y0,kAB,则线段AB的垂直平分线方程为yy0(x2),可得x5,y0是的一个解,所以AB的垂直平分线与x轴的交点C为定点,且点C(5,0),由可得直线AB的方程为yy0(x2),即x(

15、yy0)+2 代入y26x可得y22y0(yy0)+12,即y22y0y+2y020 ,由题意y1,y2是方程的两个实根,且y1y2,所以1y021(2y0212)1y02+180,解得2y02,|AB|,又C(5,0)到线段AB的距离h|CM|,所以SABC|AB|h,当且仅当9+y02212y02,即y0,A(,),B(,),或A(,),B(,)时等号成立,所以SABC的最大值为【答案点睛】此题考查根据焦点和准线关系求抛物线方程,根据直线与抛物线位置关系求解三角形面积的最值,表示三角形的面积关系常涉及韦达定理整体代入,抛物线中需要考虑设点坐标的技巧,处理最值问题常用函数单调性求解或均值不等

16、式求最值.19、(1)(2)详见解析【答案解析】(1),在上,因为是减函数,所以恒成立,即恒成立,只需.令,则,因为,所以.所以在上是增函数,所以,所以,解得.所以实数的最大值为.(2),.令,则,根据题意知,所以在上是增函数. 又因为,当从正方向趋近于0时,趋近于,趋近于1,所以,所以存在,使, 即,所以对任意,即,所以在上是减函数;对任意,即,所以在上是增函数, 所以当时,取得最小值,最小值为.由于,则 ,当且仅当 ,即时取等号,所以当时,20、(1);(2)证明见详解.【答案解析】(1)将不等式的解集用表示出来,结合题中的解集,求出的值;(2)利用柯西不等式证明.【题目详解】解:(1),

17、因为的解集为,所以,;(2)由(1)由柯西不等式,当且仅当,等号成立【答案点睛】本题考查了绝对值不等式的解法,利用柯西不等式证明不等式的问题,属于中档题.21、(1)函数与的图象在区间上有交点;证明见解析;(2)且;【答案解析】(1)令,结合函数零点的判定定理判断即可;设切点横坐标为,求出切线方程,得到,根据函数的单调性判断即可;(2)求出的解析式,通过讨论的范围,求出函数的单调区间,确定的范围即可【题目详解】解:(1)当时,函数,令,则,故,又函数在区间上的图象是不间断曲线,故函数在区间上有零点,故函数与的图象在区间上有交点;证明:假设存在,使得直线是曲线的切线,切点横坐标为,且,则切线在点切线方程为,即,从而,且,消去,得,故满足等式,令,所以,故函数在和上单调递增,又函数在时,故方程有唯一解,又,故不存在,即证;(2)由得,令,则,当时,递减,故当时,递增,当时,递减,故在处取得极大值,不合题意;时,则在递减,在,递增,当时,故在递减,可得当时,当时,易证,令,令,故,则,故在递增,则,即时,故在,内存在,使得,故在,上递减,在,递增,故在处取得极小值由(1)知,故在递减,在递增,故时,递增,不合题意;当时,当,时,递减,当时,递增,故在处

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论