锤磨机:锤片式粉碎机机械外文文献翻译、中英文翻译、外文翻译_第1页
锤磨机:锤片式粉碎机机械外文文献翻译、中英文翻译、外文翻译_第2页
锤磨机:锤片式粉碎机机械外文文献翻译、中英文翻译、外文翻译_第3页
锤磨机:锤片式粉碎机机械外文文献翻译、中英文翻译、外文翻译_第4页
锤磨机:锤片式粉碎机机械外文文献翻译、中英文翻译、外文翻译_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1:锤磨机:锤片式粉碎机在饲料加工过程中可能存在的成分需要某种形式的处理方式来完成。这些饲料成分包括粗糙的谷类植物,按要求减小玉米粒度可以提高原料的性能和营养价值。有许多不同的方法可以减小饲料微粒的粒度。在这里我们主要介绍锤磨机和滚子磨机,具体介绍如下:锤片式和滚子式粉碎机都可以加工出满足要求的圆形饲料,但是要选择其他机器来满足同样要求的饲料粒度时就需要再加工前选择合适的加工方式。过度减小饲料粒度将会浪费电能、 造成机械设备不必要的磨损和家畜的消化问题。为了深入了解实际加工过程中产生材料粒度减小的原因请参考一下内容:微粒尺寸减小。锤片式粉碎机优点:可以生产的饲料粒度范围广可以用于加工脆性材料和

2、纤维操作简单相对于滚子式粉碎机来说它的早期投入低需要的维护很少它粉碎的饲料微粒一般都是圆形的而且表面光滑缺点:相对于滚子粉碎机它的效率较低产生热量(能量损失)微粒大小不均匀(相差大)易产生噪音和灰尘、污染环境总体设计如图所示,锤片粉碎机的主要零件包括:传送部分:用于将物料送到粉碎室的通道。锤片可以自由转动转子部分:由一系列锤片组成的转子装在水平轴上工作粉碎物料,锤片可以自由转动并悬浮平行于轴杆穿过转子盘。锤片的作用是击碎物料减小它们的粒度。筛板: 利用重力和空气的辅助来分离饲料微粒。粉碎机筛孔要能确保粉碎粒度最大物料的通过。粉碎室设计材料引入到粉碎室的路径由一个变量的速度静脉接驳。这种类型的路

3、径有它自己的发动机由可编程的控制器连接锤片式粉碎机的主传动电机。各线路接驳的速度控制,以保持最佳电量的主电机负载。锤片的设计和布局锤片的设计和布局由操作参数,如转子转速、电动机功率和筛板间隙决定。锤片的的最佳设计和布局可以提供最大的饲料原料接触。粉碎机中转子的转速大约为1800 转 /分时应当用的锤片为25 厘米( 10 英寸)长,6.35 厘米( 2.5 英寸)宽,6.4 毫米( 0.25 英寸)厚。对于转速约为3600 转 / 分的的锤片一般应为15 到 20 厘米( 6-8 英寸)长,5 厘米( 2英寸)宽,6.4 毫米( 0.25 英寸)厚。对于转速为1800 转 /分的锤片式粉碎机来

4、说,锤片数量应该是2.53.5/ 马力,而对于转速为 3600 转 / 分的粉碎机来说锤片的数量为12/ 马力。锤片应该是平衡的,而且它们在轴杆上的排列在运动时不至于相互碰撞。锤片和筛板之间的距离一般应为1214 毫米 ( 1/2英寸)为了减小谷粒的大小。锤片末端线速度是微粒粒度的关键,末端线速度是锤片末端或者远离转子边缘的速度,它可以通过轴的转速乘以轴的直径和圆周率再除以12in/ft 来求得,详见下面公式:英尺 / 分 = D n/12D 转子直径n 转速在锤片粉碎机中常见的速度变化范围一般为5000-7000 米 /分 ( 16,000-23,000 英尺 /分) 。 当末端线速度增大到

5、23000 英尺 /分时就必须要考虑粉碎机的材料和所有零件结构是否能满足要求。在转速为2.3 万英尺 /分时改变轴的转速是不值得推荐的方法。粉碎机中主要的力是冲击力。在锤片和饲料颗粒之间增加的任何距离; 增加距离的重要性;或者有利于改善饲料微粒的大小。距离的增大可以通过提高锤片的速度来实现。筛片设计粉碎机中筛板的筛孔数量取决于微粒大小和粉碎效率。筛板设计必须保证饲料的最大微粒通过和提供最大的开放面积。在保证筛板强度的情况下筛孔的最佳排列方式直线排列与开放区域呈60角交错。这种方法可以设计出的筛片有40的用的是3.2mm( 1/8 英寸) 的筛孔并直线排列两孔中心距为4.8mm( 3/16 英寸

6、) 。操作者应该特别注意粉碎机筛板有效面积与功率的比值。对于小麦类植物一般推荐使用的比例为55 平方厘米/ 马力( 8-9 平方英寸)( Bliss1990 ) 。如果没有足够的功率面积比将产生热量。当温度达到44 -46 (120-125F )时粉碎机的生产能力将下降50 .饲料的排出是粉碎机设计的标准。粉碎机的度电产量不仅受生产效率的影响还受物料粒度的影响。当选用正确的有效筛板面积百分比和合适的锤筛间隙是粉碎的物料就能及时的从粉碎室中排出。Anderson(1994) 曾声明物料微粒不能全部通过筛片是因为一部分物料流在环流层外层( 靠近筛面) 随着转子高速旋转。这些微粒通过与筛片表面和彼此

7、之间的摩擦来减小自身的尺寸。但过度减小微粒的尺寸也会产生反效果:能源都浪费在热量上,产量也会受到限制物料微粒也会变得过小。多数的新型锤片式粉碎机都有吸风系统,可以将空气吸进粉碎室用于粉碎物料。吸风的目的是造成粉碎室负压, 打破筛片表面的物料流促使室内残留的物料通过筛孔。有些粉碎机设计有两片筛片,这种筛片可以使用大的筛孔便于更多的减少滞留在筛片表面的物料数量。锤片式粉碎机锤片锤片式粉碎机中锤片用来冲击物料使其尺寸变小,使得它更用以与其他物料混合。锤片的布局、形状、 材料都是很重要的。锤片有单孔的和双孔之分,双孔的锤片可以使用两次,一端磨损还可以使用另外一端。锤片安装在粉碎机轴杆上转动击打物料。锤

8、片的外形尺寸A 厚度B 宽度C 轴孔半径D 锤片伸出长度E 锤片总长锤片粉碎机常用筛片粉碎机中筛片是用来分离物料微粒的。粉碎机可以将物料粉碎的的足够小,通过空气压缩系统的辅助微粒可以顺利的通过筛孔。粒度:粒度大小:谷类植物是从最外层开始被击碎的而后是微粒内部。微粒的大小不仅与筛片表面的微粒数量有关而且还与粉碎速度有关。增加表面积是最重要的。对消化系统来说谷物的内部物质是重要,像淀粉和蛋白质等营养成分。这些营养成分可以改善消化道的吸收作用,增加动物的体能。微粒的成球形、物理性能可以提高物料的混合性便于转载和运输。锤片式粉碎机粉碎机是通过高速旋转地锤片不断地打击物料来降低其微粒尺寸的。锤片以488

9、0 米 /分( 16,000 英尺 /分)或者7015 米 /分( 23,000 英尺 /分)的线速度转动。能量的转移可以将物料达成许多微粒。微粒的大小取决于锤片线速度、锤片设计和布局、筛片的设计和筛孔大小以及吸风系统的共同作用。因为锤片粉碎机中主要用来粉碎物料的力是冲击力,所以增加锤片与物料间的冲击可以提高物料的卸出,对粒度的减小也是有利的。Anderson(1994) 声称当击打速度和筛孔的大小保持不变时,可以通过增加转子直径来增加锤片的末端线速度,进而生产出粒度更小的物料。 锤片粉碎的物料一般是圆形的且表面光滑。微粒大小不一也就是说既有大微粒也有小粒度微粒。粉碎机轴杆锤片式粉碎机的锤片是

10、固定在轴杆上的,并可以绕轴杆转动。轴杆的大小取决于粉碎机的设计。辊子粉碎机辊子粉碎机是通过力和机器特性相结合的方式来实现物料粉碎的。如果辊子以相同的速度旋转则粉碎时用的力主要是压力。若辊子以不同的速度旋转粉碎时主要的力有切应力和压应力。 如果是带槽的辊子将会撕裂或粉碎物料,槽宽的辊子粉碎机比细槽的粉碎机粉碎的物料粒度要小。设计合理的辊子粉碎机噪声低且低污染、维护方便。辊子粉碎机的运转速度较低因而不易产生热量而且物料水分损失也较少。粉碎的微粒大小几乎一样,也就是说物料微粒很均匀。微粒形状不规则大多是长方体或立方体而不是圆形的。相对于锤片式粉碎机来说辊子式粉碎机中小尺寸微粒在辊子上的附着率要低51

11、5。辊子粉碎机优点:效率高微粒粒度均匀低噪声、低污染缺点:几乎不用于粉碎纤维类植物粉碎的微粒形状不规则前期投入可能要高(取决于系统的设计)必要时维护保养费用要高总体设计有很多制造公司生产辊子粉碎机,但他们都有共同的设计特点如下所述:传送部件将物料连续的送到粉碎室以供粉碎一对辊子水平固定在支架上一个转子固定不动另一个辊子间歇地靠近或远离它辊子大都是以相同的速度反向旋转或者其中一个转动较快,辊子表面也许是光滑的也或许是有许多沟槽。轴杆,几对辊子可能是固定在另一个支架的辊子上的粉碎机中物料通常以连续不变的速度通过辊子以保证粉碎机辊子的最佳运转。最简单的粉碎系统是一个储料器和一个手工操作的卸料门。这种

12、类型的粉碎室最适合于粗糙的加工过程。对于研磨来说辊子粉碎是值得提倡的。这种类型的粉碎机中辊子位于储料器的下方,有一个手工操作或自动控制的可调卸料门。一对辊子的直径是912 英寸( 23 到 30.5 厘米) ,它们的长径比可以达到4: 1。辊子之间的排列方式是非常重要的,物料粒度取决于辊子之间的间隙。如果间隙不一致其粉碎性能将变坏从而导致维护成本增加、生产率下降,总之生产成本增加。可调节的间距, 通过使用自动或手动气动或液压缸通过电脑操作或可编程序控制器来实现。每对辊子都是反向旋转的。辊子快速旋转可以提高物料的粒度,每对辊子的转速不同粉碎得到的物料粒度也不同。典型的范围是1.2:1 到 2.0

13、:1 (由快到慢),对于一个9 英寸23 厘米)的辊子典型的速度是1300 英尺 /分 ( 395米 /分) , 而对于一个12 英寸( 30.5厘米)的辊子来说速度为3140 英尺 / 分( 957 米 / 分) 。对于靠单独电机驱动的两个高速旋转地辊子可用皮带或链轮来减小速度。在底部的第三对高速滚子可以有单独的驱动电机,另外辊子表面的凹槽可以改善速度的差异并提高粉碎效率。辊子粉碎机通过将一对辊子撞到另一对辊子之上,第二对装在第三对之上的方式来提高粉碎效果,这种方式产生的微粒可以降到500 微米,其粉碎能力是锤片式粉碎机的两倍。粉碎粗糙类谷物时辊子粉碎机比锤片式粉碎机有优势其度电产量可能要比

14、锤片式粉碎机高85,饲料生产行业中谷类植物的典型粒度为600-900 微米,降低了生产成本。2:Hammer mills: hammer-millsIn the feed processing process there may be a number of ingredients that require some form of processing. These feed ingredients include coarse cereal grains, corns which require particle size reduction which will improve the

15、performance of the ingredient and increase the nutritive value. There are a many ways to achieve this particle size reduction, here we are looking at using hammer-mills, for information on roller mills, see the related links at the bottom of this page.Both hammering and rolling can achieve the desir

16、ed result of achieving adequately ground ingredients, but other factors also need to be looked at before choosing the suitable method to grind. Excessive size reduction can lead to wasted electrical energy, unnecessary wear on mechanical equipment and possible digestive problems in livestock and pou

17、ltry. For more in depth information regarding what actually occurs to the ingredients during size reduction please refer to this link: particle size reduction.Hammer-millsAdvantages:are able to produce a wide range of particle sizesWork with any friable material and fiberease of useLower initial inv

18、estment when compared with a roller millMinimal maintenance neededParticles produced using a hammer-mill will generally be spherical, with a surface that appears polished.Disadvantages:Less energy efficient when compared to a roller millmay generate heat (source of energy loss)produce greater partic

19、le size variability (less uniform)Hammer-mills are noisy and can generate dust pollutionGeneral DesignThe major components of these hammer-mills, shown in the picture, include: - a delivery device is used to introduce the material to be ground into the path of the hammers. A rotor comprised of a ser

20、ies of machined disks mounted on the horizontal shaft performs this task. - Free-swinging hammers that are suspended from rods running parallel to the shaft and through the rotor disks. The hammers carry out the function of smashing the ingredients in order to reduce their particle size. - a perfora

21、ted screen and either gravity- or air-assisted removal of ground product. Acts to screen the particle size of the hammer mill to ensure particles meet a specified maximum mesh size.Feeder designMaterials are introduced into the paths of the hammers by a variable speed vein feeder. This type of feede

22、r can have its motor slaved by a programmable controller to the main drive motor of the hammer mill. The operational speed of the feeder is controlled to maintain optimum amperage loading of the main motor.Hammer design and configurationThe design and placement of hammers is determined by operating

23、parameters such as rotor speed, motor horsepower, and open area in the screen. Optimal hammer design and placement will provide maximum contact with the feed ingredient.Hammer mills in which the rotor speed is approximately 1,800 rpm, should be using hammers which are around 25cm ( 10 inches) long,

24、6.35cm (2.5 inches) wide, and 6.4mm (0.25 inches) thick. For a rotor speed of about 3,600 rpm, hammers should be 15 to 20 cm ( 6-8 inches long, 5 cm ( 2 inches) wide, and 6.4 mm (0.25 inches) thick.The number of hammers used for a hammer mill of 1,800 rpm, should be 1 for every 2.5 to 3.5 horsepower

25、, and for 3,600 rpm, one for every 1 to 2 horsepower. Hammers should be balanced and arranged on the rods so that they do not trail one another. The distance between hammer and screen should be 12 to 14 mm ( 1/2 inch) for size reduction of cereal grains.The velocity or tip speed of the hammers is cr

26、itical for proper size reduction. Tip speed is the speed of the hammer at its tip or edge furthest away from the rotor, and is calculated by multiplying the rotational speed of the drive source (shaft rpm) by the circumference of the hammer tip arc. See the following formula:A common range of tip sp

27、eeds seen in hammer-mills is commonly in the range between 5,000 and 7,000 m/min ( 16,000 and 23,000 feet per minute). When the tip speeds exceed 23,000 feet per minute, careful consideration must be given to the design of the hammer mill, the materials used in its construction, and the fabrication

28、of all the components. Simply changing the rotational speed of the drive source is not a recommended method of increasing hammer speed in excess of 23,000 feet per minute.Impact is the primary force used in a hammer-mill. Anything which increases the chance of a collision between a hammer and a targ

29、et; increases the magnitude of the collision; or improves material take-away provides an advantage in particle size reduction. The magnitude of the collisions can be escalated by increasing the speed of the hammers.Screen DesignThe amount of open area in a hammer mill screen determines the particle

30、size and grinding efficiency. The screen must be designed to maintain its integrity and provide the greatest amount of open area. Screen openings (holes) that are aligned in a 60-degree staggered pattern optimize open area while maintaining screen strength. This method will result in a 40 percent op

31、en area using 3.2 mm (1/8 inch) holes aligned on 4.8 mm (3/16 inch) centers.Feed producers need to pay particular attention to the ratio of open screen area to horsepower. Recommended ratio for grains would be 55 cm2 ( 8-9 inches square) per horsepower (Bliss, 1990). Not enough open area per horsepo

32、wer results in the generation of heat. When the heat generated exceeds 44C to 46C (120-125F), capacity may be decreased as much as 50 percent.The removal of sized material from a hammer-mill is a critical design feature. Proper output of material affects not only the efficiency of operation, but als

33、o particle size. When the correct ratio of screen area to horsepower is used and proper distance between hammers and screen face is maintained, most of the correctly sized particles will exit the screen in a timely manner. Anderson (1994) stated the particles that do not pass through the screen hole

34、s become part of a fluidized bed of material swept along the face of the screen by the high-speed rotation of the hammers. As these particles rub against the screen and each other their size is continually reduced by attrition. This excessive size reduction is counterproductive. Energy is wasted in

35、the production of heat, throughput is restricted, and particles become too small.Most new hammer mills are equipped with an air-assist system that draws air into the hammer mill with the product to be ground. Systems are designed to provide reduced pressure on the exit side of the screen to disrupt

36、the fluidized bed of material on the face of the screen, thus allowing particles to exit through screen holes. Some full circle hammer mills are designed so the screen is in two pieces. It is possible to use a larger whole size on the upward arc of the hammers to further reduce the amount of materia

37、l on the face of the screen.Hammer Mills HammersHammers are used inside the hammer-mill to impact smash ingredients up into smaller particles, making it more suitable for uniform mixing and usage in feed. Hammers are available in a huge range of configurations, shapes, facings and materials. Hammers

38、 are available as single holed or with two holes, with two holes allowing the hammers to be used twice as the wear is done to one end of the hammer; the hammer can be rotated and used a second time. The hole fits onto a rod inside the hammer mill and swings to hit the material.Dimensions of a hammer

39、ThicknessWidthDiameter to fit rod sizeSwing LengthTotal LengthHammer Mill Perforated ScreensHammer mills screens are used inside a hammer mill to separate particle sizes. Particle of small enough diameter that has been successfully grinded by the hammer mill passes through the screen and leaves the

40、hammer mill with the aid of the pneumatic system.Particle Size ReductionSize Reduction: The initial reduction of cereal grains begins by disrupting the outer protective layer of the seed (hull), exposing the interior, see the picture. Continued size reduction increases both the number of particles a

41、nd the amount of surface area per unit of volume. It is this increased surface area that is of primary importance. A greater portion of the grains interior is exposed to digestive enzymes, allowing increased access to nutritional components such as starch and protein. The enhanced breakdown of these

42、 nutritional components improves absorption in the digestive tract. The overall effect is increased animal performance. Size reduction is also used to modify the physical characteristics of ingredients resulting in improved mixing, pelleting, and, in some instances, handling or transport.Hammer mill

43、s: Reduce the particle size of materials by impacting a slow moving target, such as a cereal grain, with a rapidly moving hammer. The target has little or no momentum (low kinetic energy), whereas the hammer tip is traveling at a minimum of 4,880 m/min (16,000 feet per min) and perhaps in excess of

44、7,015m/min ( 23,000 feet per min) (high kinetic energy). The transfer of energy that results from this collision fractures the grain into many pieces. Sizing is a function of hammer-tip speed; hammer design and placement; screen design and hole size; and whether or not air assistance is utilized.Bec

45、ause impact is the primary force used in a Hammer mill to reduce the size of the particles, anything that; increases the chance of a collision between a hammer and a target, increases the magnitude of the collision, or improves material take-away, would be advantageous to particle size reduction. Th

46、e magnitude of the collisions can be escalated by increasing the speed of the hammers. Anderson (1994) stated that when drive speed and screen size were kept constant, the increased hammer-tip speed obtained from increased rotor diameter produced particles of smaller mean geometric size.Particles pr

47、oduced using a hammer mill will generally be spherical in shape with a surface that appears polished. The distribution of particle sizes will vary widely around the geometric mean such that there will be some large-sized and many small-sized particles.Hammer Mill RodsHammers are attached to rods ins

48、ide the hammer mill, which are what they are swung on. Dimensions of rods are dependant on brand and style of the hammer mill.Roller millRoller mills accomplish size reduction through a combination of forces and design features. If the rolls rotate at the same speed, compression is the primary force

49、 used. If the rolls rotate at different speeds, shearing and compression are the primary forces used. If the rolls are grooved, a tearing or grinding component is introduced. There is little noise or dust pollution associated with properly designed and maintained roller mills. Their slower operating

50、 speeds do not generate heat, and there is very little moisture loss. Particles produced tend to be uniform in size; that is, very little fine material is generated. The shape of the particles tends to be irregular, more cubic or rectangular than spherical. The irregular shape of the particles means

51、 they do not pack as well. For similar-sized particles, bulk density of material ground on a roller mill will be about 5 to 15 percent less than material ground by a hammer mill.Roller millsAdvantages:energy efficientuniform particle-size distributionlittle noise and dust generationDisadvantages:lit

52、tle or no effect on fiberparticles tend to be irregular in shape and dimensionmay have high initial cost (depends on system design)when required, maintenance can be expensiveGeneral DesignThere are many manufacturers of roller mills, but they all share the following design features shown adjacent pi

53、cture:a delivery device to supply a constant and uniform amount of the material to be grounda pair of rolls mounted horizontally in a rigid frameone roll is fixed in position and the other can be moved closer to or further from the fixed rollthe rolls counter rotate either at the same speed or one m

54、ay rotate faster; roll surface may be smooth or have various grooves or corrugationsbar; pairs of rolls may be placed on top of one another in a frame.To ensure optimum operation, material must be introduced between the rolls in a uniform and constant manner. The simplest feeder is a bin hopper with

55、 an agitator located inside it and a manually set discharge gate. This type of feeder is best suited for coarse processing. For grinding operations, a roll feeder is suggested. In this type of feeder, the roll is located below the bin hopper and has a manually set or automatic adjustable discharge gate. If the gate is adjusted automatically, it will be slaved to the amperage load of the main motor of the roller mill.The rolls that make up a pair

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论